OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 24 — Nov. 28, 2005
  • pp: 9922–9934

Causality and Kramers-Kronig relations for waveguides

Magnus W. Haakestad and Johannes Skaar  »View Author Affiliations

Optics Express, Vol. 13, Issue 24, pp. 9922-9934 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Starting from the condition that optical signals propagate causally, we derive Kramers-Kronig relations for waveguides. For hollow waveguides with perfectly conductive walls, the modes propagate causally and Kramers-Kronig relations between the real and imaginary part of the mode indices exist. For dielectric waveguides, there exists a Kramers-Kronig type relation between the real mode index of a guided mode and the imaginary mode indices associated with the evanescent modes. For weakly guiding waveguides, the Kramers-Kronig relations are particularly simple, as the modal dispersion is determined solely from the profile of the corresponding mode field.

© 2005 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Research Papers

Original Manuscript: August 24, 2005
Revised Manuscript: August 24, 2005
Published: November 28, 2005

Magnus Haakestad and Johannes Skaar, "Causality and Kramers-Kronig relations for waveguides," Opt. Express 13, 9922-9934 (2005)

Sort:  Journal  |  Reset  


  1. R. de L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 547–557 (1926). [CrossRef]
  2. H. A. Kramers, “La diffusion de la lumi´ere par les atomes,” Atti Congr. Int. Fis. Como 2, 545–557 (1927).
  3. H. M. Nussenzveig, Causality and Dispersion Relations (Academic Press, New York, 1972).
  4. P. W. Milonni, “Controlling the speed of light pulses,” J. Phys. B: At. Mol. Opt. Phys. 35, R31–R56 (2002). [CrossRef]
  5. V. Lucarini, F. Bassani, K.-E. Peiponen, and J. J. Saarinen, “Dispersion theory and sum rules in linear and nonlinear optics,” Riv. Nuovo Cim. 26, 1–120 (2003).
  6. V. V. Shevchenko, “Spectral expansions in eigenfunctions and associated functions of a non-self-adjoint Sturm-Liouville problem on the whole real line,” Differ. Equations. 15, 1431–1443 (1979).
  7. V. V. Shevchenko, “On the completeness of spectral expansion of the electromagnetic field in the set of dielectric circular rod waveguide eigen waves,” Radio Science 17, 229–231 (1982). [CrossRef]
  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  9. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  10. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Reading, Massachusetts, 1989).
  11. Z. H. Wang, “Free Space Mode Approximation of Radiation Modes for Weakly Guiding Planar Optical Waveguides,” IEEE J. Quantum Electron. 34, 680–685 (1998). [CrossRef]
  12. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  13. F. Brechet, P. Leproux, P. Roy, J. Marcou, and D. Pagnoux, “Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic-bandgap fibre,” Electron. Lett. 36, 870–872 (2000). [CrossRef]
  14. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004). [CrossRef]
  15. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-309</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited