OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10092–10101

Electrically driven silicon resonant light emitting device based on slot-waveguide

Carlos Angulo Barrios and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 13, Issue 25, pp. 10092-10101 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-silicon in-plane micron-size electrically driven resonant cavity light emitting device (RCLED) based on slotted waveguide is proposed and modeled. The device consists of a microring resonator formed by Si/SiO2 slot-waveguide with a low-index electroluminescent material (erbium-doped SiO2) in the slot region. The geometry of the slot-waveguide permits the definition of a metal-oxide-semiconductor (MOS) configuration for the electrical excitation of the active material. Simulations predict a quality factor Q of 6,700 for a 20-μm-radius electrically driven microring RCLED capable to operate at a very low bias current of 0.75 nA. Lasing conditions are also discussed.

© 2005 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Research Papers

Carlos Angulo Barrios and Michal Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005)

Sort:  Journal  |  Reset  


  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  2. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator base don a metal oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  3. Q. Xu, B. Schmitdt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  4. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronics circuits," Nature 348, 338-341 (1996). [CrossRef]
  5. R. J. Walters, G. I. Bourianoff and H. A. Atwater, "Field-effect electroluminescence in silicon nanocrystals," Nature Materials 4, 143-146 (2005). [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269</a>. [CrossRef] [PubMed]
  7. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  8. M. E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti, and A. Messina, "High efficiency light emitting devices in silicon," Mater. Sci. Eng. B 105, 83-90 (2003). [CrossRef]
  9. V. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., 29 , 1209-1211 (2004). [CrossRef] [PubMed]
  10. T. Baehr-Jones, M. Hochberg, C. Walker, A Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]
  11. C. A. Barrios, V. R. A. R. Panepucci and M. Lipson, Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices," J. Lightwave Technol. 21, 2332-2339 (2003). [CrossRef]
  12. <a href= "http://www.rsoftinc.com/fullwave.htm">http://www.rsoftinc.com/fullwave.htm</a>
  13. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett., 36, 321-322 (2000). [CrossRef]
  14. R. A. Soref and B. R. Bennett, "Kramers-Kronig analysis of E-O switching in silicon," SPIE Integr. Opt. Circuit Eng., 704, 1986.
  15. P. G. Kik and A. Polman, "Erbium doped optical waveguide amplifiers on silicon," Materials Research Society Bulletin 23(4), 48 (1998).
  16. SILVACO International. 4701 Patrick Henry Drive, Bldg.1, Santa Clara, CA 94054.
  17. M. Lipson, T. Chen, K. Chen, X. Duan, and L. C. Kimerling, "Erbium in Si-based light confining structures," Mater. Sci. Eng. B 81, 36-39 (2001). [CrossRef]
  18. A. Polman, B. Min, J. Kalkman, T. J, Kippenberg, and K. J. Vahala, "Ultra-low threshold erbium-implanted toroidal microlaser on silicon," Appl. Phys. Lett. 84, 1037-1039 (2004). [CrossRef]
  19. P. Koonath, T. Indukuri, and B. Jalali, "Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon," Appl. Phys. Lett. 85, 1018-1020 (2004). [CrossRef]
  20. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express, 13, 3129-3135 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129</a> [CrossRef] [PubMed]
  21. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, "Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics," IEEE J. Selected Top. Quantum Electron. 8, 949-955 (2002). [CrossRef]
  22. M. Gnan, H. M. H. Chong, S. S Kim, A. C. Bryce, M. Sorel, and R. M. De La Rue, "Coupled microcavity in photonic wire Bragg grating," Conference on Lasers and Electro Optics (CLEO), paper CWG7, San Francisco, 2004.
  23. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall modal volumes in dielectric optical microcavities," Phys. Rev. Lett., 95, 143901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited