OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10238–10247

Experimental demonstration of labyrinth-based left-handed metamaterials

Irfan Bulu, Humeyra Caglayan, and Ekmel Ozbay  »View Author Affiliations


Optics Express, Vol. 13, Issue 25, pp. 10238-10247 (2005)
http://dx.doi.org/10.1364/OPEX.13.010238


View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this present work, we propose and demonstrate a resonant structure that solves two major problems related to the split-ring resonator structure. One of the problems related to the split-ring resonator structure is the bianisotropy, and the other problem is the electric coupling to the magnetic resonance of the split-ring resonator structure. These two problems introduce difficulties in obtaining isotropic left-handed metamaterial mediums. The resonant structure that we propose here solves both of these problems. We further show that in addition to the magnetic resonance, when combined with a suitable wire medium, the structure that we propose exhibits left-handed transmission band. We believe that the structure we proposed may have important consequences in the design of isotropic negative index metamaterial mediums.

© 2005 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(350.4010) Other areas of optics : Microwaves

ToC Category:
Research Papers

Citation
Irfan Bulu, Humeyra Caglayan, and Ekmel Ozbay, "Experimental demonstration of labyrinth-based left-handed metamaterials," Opt. Express 13, 10238-10247 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10238


Sort:  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. D. F. Sievenpiper, M. E. Sickmiller, and E. Yablonovitch, "3D Wire Mesh Photonic Crystals," Phys. Rev. Lett. 76, 2480 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996). [CrossRef] [PubMed]
  4. S.I. Maslovski, S.A. Tretyakov, P.A. Belov, "Wire media with negative effective permittivity: A quasi-static model," Microwave Opt. Technol. Lett. 35, 47 (2002). [CrossRef]
  5. C. Poulton, S. Guenneau, A. B. Movchan, "Noncommuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fibres," Phys. Rev B 69, 195112, (2004). [CrossRef]
  6. D. Felbacq, G. Bouchitte, "Homogenization of a set of parallel fibres," Waves In Rand. Med. 7, 245 (1997). [CrossRef]
  7. J. B. Pendry, A. J. Holden, D. J. Robins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999). [CrossRef]
  8. P. Markos and C. M. Soukoulis, "Transmission studies of left-handed materials," Phys. Rev. B 65, 033401 (2001) [CrossRef]
  9. Mehmet Bayindir, K. Aydin, E. Ozbay, P. Marko, and C. M. Soukoulis, "Transmission properties of composite metamaterials in free space," Appl. Phys. Lett. 81, 120 (2002) [CrossRef]
  10. Philippe Gay-Balmaz and Olivier J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929 (2002) [CrossRef]
  11. R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-Handed-Media Simulation and Transmission of EMWaves in Subwavelength Split-Ring-Resonator-Loaded Metallic Waveguides," Phys. Rev. Lett. 89, 183901 (2002) [CrossRef] [PubMed]
  12. C. R. Simovski and B. Sauviac, "Role of wave interaction of wires and split-ring resonators for the losses in a left-handed composite," Phys. Rev. E 70, 046607 (2004) [CrossRef]
  13. A. B. Movchan and S. Guenneau, "Split-ring resonators and localized modes," Phys. Rev. B 70, 125116 (2004) [CrossRef]
  14. Yi-Jang Hsu, Yen-Chun Huang, Jiann-Shing Lih, and Jyh-Long Chern, "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials," J. Appl. Phys. 96, 1979 (2004) [CrossRef]
  15. M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, "Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring," J. Appl. Phys. 95, 3778 (2004) [CrossRef]
  16. Yen-Chun Huang, Yi-Jang Hsu, Jiann-Shing Lih, and Jyh-Long Chern, "Transmission Characteristics of Deformed Split-Ring Resonators ," Jpn. J. Appl. Phys., Part 2 43, L190 (2004) [CrossRef]
  17. B. Sauviac, C.R. Simovski, S.A. Tretyakov, "Double split-ring resonators: Analytical modeling and numerical simulations," Electromagnetics 24, 317 (2004). [CrossRef]
  18. Philippe Gay-Balmaz and Olivier J. F. Martin, "Efficient isotropic magnetic resonators," Appl. Phys. Lett. 81, 939 (2002) [CrossRef]
  19. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002) [CrossRef]
  20. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective Medium Theory of Left-Handed Materials," Phys. Rev. Lett. 93, 107402 (2004) [CrossRef] [PubMed]
  21. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003) [CrossRef]
  22. Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005) [CrossRef]
  23. D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Appl. Phys. Lett. 77, 2246 (2000). [CrossRef]
  24. Xudong Chen, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, Jr., and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004) [CrossRef]
  25. Xudong Chen, Bae-Ian Wu, Jin Au Kong, and Tomasz M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Phys. Rev. E 71, 046610 (2005) [CrossRef]
  26. D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000) [CrossRef] [PubMed]
  27. Andrew A. Houck, Jeffrey B. Brock, and Isaac L. Chuang, "Experimental Observations of a Left-Handed Material That Obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003) [CrossRef] [PubMed]
  28. Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, "Numerical simulations of negative-index refraction in wedge-shaped metamaterials ," Phys. Rev. E 72, 016607 (2005) [CrossRef]
  29. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  30. L. Ran, J. Huangfu, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Beam shifting experiment for the characterization of left-handed properties," J. Appl. Phys. 95, 2238 (2004). [CrossRef]
  31. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental Observations of a Left-Handed Material That Obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003) [CrossRef] [PubMed]
  32. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  33. Koray Aydin, Kaan Guven, Costas M. Soukoulis, and Ekmel Ozbay, "Observation of negative refraction and negative phase velocity in left-handed metamaterials," Appl. Phys. Lett. 86, 124102 (2005). [CrossRef]
  34. K. Guven, K. Aydin, K. B. Alici, C. M. Soukoulis, and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004). [CrossRef]
  35. R. Marques, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments," IEEE Trans. Antennas Propag. 51, 2572 (2003). [CrossRef]
  36. R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B 65, 144440 (2002). [CrossRef]
  37. J.D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M.A.G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech. 53, 1451 (2005). [CrossRef]
  38. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943 (2004) [CrossRef]
  39. R. Marques, F. Medina, and R. Rafii-El-Idrissi, Comment on "Electromagnetic resonances in individual and coupled split-ring resonators" [J. Appl. Phys. 92, 2929 (2002)] J. Appl. Phys. 94, 2770 (2003) [CrossRef]
  40. Koray Aydin, Kaan Guven, Maria Kafesaki, Lei Zhang, Costas M. Soukoulis, and Ekmel Ozbay, "Experimental observation of true left-handed transmission peaks in metamaterials," Opt. Lett. 29, 2623 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited