OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10266–10271

Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber

Kazi S. Abedin  »View Author Affiliations

Optics Express, Vol. 13, Issue 25, pp. 10266-10271 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber is observed using a cw laser at 1.55 μm wavelength region. Brillouin threshold for a 5-m-long fiber is as small as 85 mW. The Brillouin frequency shift vB and the gain linewidth ΔvB are 7.95 GHz and 13.2 MHz, respectively, measured with heterodyne detection and an RF spectrum analyzer. A Brillouin gain coefficient gB of 6.0 × 10-9 m/W, about 134 times larger than that of fused silica fiber, is obtained for As2Se3 single mode fiber from measurements of Brillouin threshold power and the gain linewidth.

© 2005 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2400) Fiber optics and optical communications : Fiber properties
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Research Papers

Kazi S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005)

Sort:  Journal  |  Reset  


  1. E. P. Ippen and R.H. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-540 (1972). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, California, 1995.
  3. Y. Okawachi, J. E. Sharping, A. L. Gaeta, M. S. Bigelow, A. Schweinsberg, R. W. Boyd, Z. Zhu, and D. J. Gauthier, "Tunable all-optical delays via Brillouin slow light in an optical fiber," CLEO 2005, Baltimore, MD, CMCC3.
  4. H. Yoshida, M. Nakatsuka, H. Fujita, T. Sasaki, and K. Yoshida, "High-energy operation of a stimulated Brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal," Appl. Opt. 36, 7783-7787 (1997). [CrossRef]
  5. J. H. Lee, T. Tanemura, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, "Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical-time division demultiplexing based on polarization rotation and wavelength shift induced by cross-phase modulation," Opt. Lett. 30, 1267-1269 (2005). [CrossRef] [PubMed]
  6. M. Asobe, T, Kanamori, and K. I. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993). [CrossRef]
  7. G. Lens, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y, Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr-effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-257 (2000). [CrossRef]
  8. J. M. Harbold, F. O. IIday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw and I. D. Aggarwal, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002). [CrossRef]
  9. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  10. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003). [CrossRef] [PubMed]
  11. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss and B. J. Eggleton, "Investigation of self-phase modulation based optical regenerator in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7637">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7637</a>. [CrossRef] [PubMed]
  12. K. Ogusu, H. Li, and M. Kitao, "Brillouin-gain coefficient of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302-1304 (2004). [CrossRef]
  13. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, "Fabrication of single-mode chalcogenide optical fiber," J. Lightwave Technol. 16, 214-217 (1998). [CrossRef]
  14. R. G Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972). [CrossRef] [PubMed]
  15. D. Cotter, "Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm," Electron. Lett. 18, 495-496 (1982). [CrossRef]
  16. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fiber characterization," Electron. Lett. 22, 1011-1013 (1986). [CrossRef]
  17. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. 15, 1157-1160 (1979). [CrossRef]
  18. A. Ghatak and K. Thyagarajan, Introduction to fiber optics, Cambridge University Press, New York, 1998.
  19. N. Uchida and N. Niizeki, "Acoustooptic deflection materials and techniques," Proceedings of IEEE 61, 1073-1092 (1973). [CrossRef]
  20. Y. Ohmachi and N. Uchida, "Vitreous As2Se3: Investigation of acousto-optical properties and application to infrared modulator," J. Appl. Phys. 43, 1709-1712 (1972). [CrossRef]
  21. G. W. Faris, L. E. Jusinski, and A. P. Hickman, "High resolution stimulated Brillouin spectroscopy in glasses and crystals," J. Opt. Soc. Am. B 10, 587-599 (1993). [CrossRef]
  22. T. C. Rich and D. A. Pinnow, "Evaluation of fiber optical waveguides using Brillouin spectroscopy," Appl. Opt. 13, 1376 (1974). [CrossRef] [PubMed]
  23. J. Bar-Joseph, A. A. Friesem, E. Lichtman and R.G. Warris, "Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers," J. Opt. Soc. Am. B 2, 1606-1611 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited