OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10316–10326

Annular photonic crystals

Hamza Kurt and D. S. Citrin  »View Author Affiliations


Optics Express, Vol. 13, Issue 25, pp. 10316-10326 (2005)
http://dx.doi.org/10.1364/OPEX.13.010316


View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of two-dimensional photonic-crystal (PC) structure called annular PC composed of a dielectric-rod and a circular-air-hole array in a square or triangular lattice such that a dielectric rod is centered within each air hole is studied. The dielectric rods within the air holes greatly modify the dispersion diagram of the photonic crystal despite the fact that the percentage of volume occupied by the dielectric rods may be small (<12%). Increasing the radius of the inner-dielectric rod, starting from zero to a critical value, reduces the band gap and closes it completely as expected, because of the addition of more dielectric material inside the unit cell. Continuing to increase the radius of the rod above the critical value surprisingly creates another photonic band gap. Comparison of the dispersion diagrams of the new structure and the original lattice (circular air hole square/triangular array in dielectric background) reveals that the photonic band gap is considerably enhanced in size for both square and triangular lattice with the new structure. This approach preserves the symmetry of the structure and provides a complete photonic band gap away from the close-packed condition and at low normalized frequencies.

© 2005 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

Citation
Hamza Kurt and D. S. Citrin, "Annular photonic crystals," Opt. Express 13, 10316-10326 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10316


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  4. C. M. Soukoulis (Ed.) Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic Publishers, The Netherlands, 2001).
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998). [CrossRef]
  6. H. Y. Ryu, M. Notomi, and Y. H. Lee, "Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab," Phys. Rev. B 68, 045209 (8 pages) (2003). [CrossRef]
  7. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  8. T. Yoshie, J. Vuckovic, A, Scherer, H. Chen, and D. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001). [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  10. K. Srinivasan, P. E. Barclay, and O. Painter, "Fabrication-tolerant high quality factor photonic crystal microcavities," Opt. Express 12, 1458-1463 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1458">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1458</a>. [CrossRef] [PubMed]
  11. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207-210 (2005). [CrossRef]
  12. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  13. S. Noda, M. Yokoyoma, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  14. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001). [CrossRef]
  15. M. F. Yanik, S. Fan, and M. Soljačić, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003). [CrossRef]
  16. S. John and M. Florescu, "Photonic bandgap materials: towards an all-optical micro-transistor," J. Opt. A: Pure Appl. Opt. 3, S103-S120 (2001). [CrossRef]
  17. H. Y. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Trans. Antennas Propag. 45, 185-187 (1997). [CrossRef]
  18. R. Coccioli, W. R. Deal, and T. Itoh, "Radiation characteristics of a patch antenna on a thin PBGsubstrate," IEEE Antennas and Propag. Society International Symposium, 2, 656-659 (1998).
  19. R. Gonzalo, P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microwave Theory Tech. 47, 2131-2138 (1999). [CrossRef]
  20. E. R. Brown, C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B 10, 404-407 (1993). [CrossRef]
  21. Y. Fei-Ran, M. Kuang-Ping, Q. Yongxi, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech. 47, 1509-1514 (1999). [CrossRef]
  22. Hamza Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (3 pages) (2005). [CrossRef]
  23. Hamza Kurt and D. S. Citrin, "Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. (accepted).
  24. Z-Y. Li, B-Y Gu, and G-Z Yang, "Large Absolute Band Gap in 2D Anisotropic Photonic Crystals," Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  25. C. M. Anderson and K. P. Giapis, "Larger Two-Dimensional Photonic Band Gaps," Phys. Rev. Lett. 77, 2949-2952 (1996). [CrossRef] [PubMed]
  26. X. Zhang and Z-Q Zhang, "Creating a gap without symmetry breaking in two-dimensional photonic crystals," Phys. Rev. B 61, 9847-9850 (2000). [CrossRef]
  27. N. Susa, "Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes," J. Appl. Phys. Lett. 91, 3501-3510 (2002).
  28. M. Agio and L. C. Andreani, "Complete photonic band gap in a two-dimensional chessboard lattice," Phys. Rev. B 61, 15519-15522 (2000). [CrossRef]
  29. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, "Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 87, 061107 (3 pages) (2005). [CrossRef]
  30. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571 (1991). [CrossRef]
  31. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express 11, 167-175 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167</a>. [CrossRef] [PubMed]
  32. R. Zoli, M. Gnan, D. Castaldini, G. Bellanca, P. Bassi, "Reformulation of the plane wave method to model photonic crystals," Opt. Express 11, 2905-2910 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2905">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2905</a>. [CrossRef] [PubMed]
  33. R. Wang, X-H. Wang, B-Y. Gu, and G-Z. Yang, "Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals," J. Appl. Phys. 90, 4307-4313 (2001). [CrossRef]
  34. H. Benistry, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, and C. Jouanin, "Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate," Appl. Phys. Lett. 76, 532-536 (2000). [CrossRef]
  35. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. D. Zutter, "Out-of-plane scattering in Photonic Crystal Slabs," IEEE Photon. Technol. Lett. 13, 565-567 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (878 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited