OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 25 — Dec. 12, 2005
  • pp: 10406–10415

Enhanced optical chromatography in a PDMS microfluidic system

A. Terray, J. Arnold, and S. J. Hart  »View Author Affiliations

Optics Express, Vol. 13, Issue 25, pp. 10406-10415 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The purely refractive index driven separation of uniformly sized polystyrene, n = 1.59 and poly(methylmethacrylate), n = 1.49 in an optical chromatography system has been enhanced through the incorporation of a custom poly(dimethysiloxane) (PDMS) microfluidic system. A customized channel geometry was used to create separate regions with different linear flow velocities tailored to the specific application. These separate flow regions were then used to expose the entities in the separation to different linear flow velocities thus enhancing their separation relative to the same separation in a constant velocity flow environment. A microbiological sample containing spores of the biological warfare agent, Bacillus anthracis, and a common environmental interferent, mulberry pollen, was investigated to test the use of tailored velocity regions. These very different samples were analyzed simultaneously only through the use of tailored velocity regions.

© 2005 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology

ToC Category:
Research Papers

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

A. Terray, J. Arnold, and S. J. Hart, "Enhanced optical chromatography in a PDMS microfluidic system," Opt. Express 13, 10406-10415 (2005)

Sort:  Journal  |  Reset  


  1. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000). [CrossRef]
  2. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  3. H. Melville; G. F. Milne; G. C. Spalding; W. Sibbett; K. Dholakia; D. McGloin, "Optical trapping of three-dimensional structures using dynamic holograms," Opt. Express 11, 3562-3567 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3562</a> [CrossRef] [PubMed]
  4. C. Mio; T. Gong; A. Terray; D. W. M. Marr, "Design of a scanning laser optical trap for multiparticle manipulation," Rev. Sci. Instrum. 71, 2196-2200 (2000). [CrossRef]
  5. N. Kitamura; F. Kitagawa, "Optical trapping - chemical analysis of single microparticles in solution," J. Photochem. Photobiol. C 4, 227-247 (2003). [CrossRef]
  6. T. E. Bridges; M. P. Houlne; J. M. Harris, "Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping," Anal. Chem. 76, 576-584 (2004). [CrossRef] [PubMed]
  7. J. Plewa; E. Tanner; D. M. Mueth; D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1978</a> [CrossRef] [PubMed]
  8. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  9. A. Terray; J. Oakey; D. W. M. Marr, "Fabrication of linear colloidal structures for microfluidic applications," Appl. Phys. Lett. 81, 1555-1557 (2002). [CrossRef]
  10. P. A. Prentice; M. P. MacDonald; T. G. Frank; A. Cuschieri; G. C. Spalding; W. Sibbett; P. A. Campbell; K. Dholakia, "Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays," Opt. Express 12, 593-600 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-593">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-593</a> [CrossRef] [PubMed]
  11. S. C. Jakeway; A. J. de Mello; E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius' J. Anal. Chem. 366, 525-539 (2000). [CrossRef]
  12. D. J. Beebe; G. A. Mensing; G. M. Walker, "Physics and applications of microfluidics in biology," Annu. Rev. Biomed. Eng. 4, 261-286 (2002). [CrossRef] [PubMed]
  13. C. Jensen-McMullin; A. Au; J. Quinsaat; E. R. Lyons; H. P. Lee, "Fiber-optic-based optical trapping and detection for lab-on-a-chip (LOC) applications," Proc. SPIE - Int. Soc. Opt. Eng. (USA) 4622, 188-194 (2002).
  14. A. D. Mehta; M. Rief; J. A. Spudich; D. A. Smith; R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999). [CrossRef] [PubMed]
  15. Y. J. Liu; C. B. Rauch; R. L. Stevens; R. Lenigk; J. N. Yang; D. B. Rhine; P. Grodzinski, "DNA amplification and hybridization assays in integrated plastic monolithic devices," Anal. Chem. 74, 3063-3070 (2002). [CrossRef] [PubMed]
  16. C. Hansen; S. R. Quake, "Microfluidics in structural biology: smaller, faster... better," Curr. Opin. Struct. Biol. 13, 538-544 (2003). [CrossRef] [PubMed]
  17. T. Kaneta; Y. Ishidzu; N. Mishima; T. Imasaka, "Theory of optical chromatography," Anal. Chem. 69, 2701-2710 (1997). [CrossRef] [PubMed]
  18. T. Imasaka; Y. Kawabata; T. Kaneta; Y. Ishidzu, "Optical Chromatography," Anal. Chem. 67, 1763-1765 (1995). [CrossRef]
  19. T. Imasaka, "Optical chromatography. A new tool for separation of particles," Analusis 26, M53-M55 (1998). [CrossRef]
  20. S. J. Hart; A. V. Terray, "Refractive-index-driven separation of colloidal polymer particles using optical chromatography," Appl. Phys. Lett. 83, 5316-5318 (2003). [CrossRef]
  21. D. C. Duffy; J. C. McDonald; O. J. A. Schueller; G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)," Anal. Chem. 70, 4974-4984 (1998). [CrossRef] [PubMed]
  22. C. H. Lin; G. B. Lee; B. W. Chang; G. L. Chang, "A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist," J. Micromech. Microeng. 12, 590-597 (2002). [CrossRef]
  23. J. C. McDonald; G. M. Whitesides, "Poly(dimethylsiloxane) as a material for fabricating microfluidic devices," Acc. Chem. Res. 35, 491-499 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1609 KB)     
» Media 2: MOV (1197 KB)     
» Media 3: MOV (2481 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited