OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10475–10482

Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers

Jes Henningsen, Jan Hald, and Jan C. Petersen  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10475-10482 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Saturated absorption is studied in overtone transitions of C2H2 and H13CN molecules confined in the hollow core of a photonic bandgap fiber. The dynamics of filling and venting the fiber is markedly different for the two molecules owing to the presence of a permanent dipole moment in one of them. Saturation is observed for input power down to 10 mW, and well resolved Lamb dips limited by transit time broadening across the 10 μm core diameter are observed with a counter-propagating probe beam.

© 2005 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(230.3990) Optical devices : Micro-optical devices
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Research Papers

Jes Henningsen, Jan Hald, and Jan C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005)

Sort:  Journal  |  Reset  


  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single- Mode Photonic Bandgap Guidance of Light in Air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  2. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  4. J. Tuominen, T. Ritari, H. Ludvigsen, J. C. Petersen, "‘Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005). [CrossRef]
  5. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers," Nature 434, 488-491 (2005) [CrossRef] [PubMed]
  6. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  7. F. Benabid, P. S. Light, F. Couny, and P. S. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005). [CrossRef] [PubMed]
  8. M. Faheem, R. Thapa, and K. L. Corwin, "Spectral hole burning of acetylene gas inside a photonic bandgap optical fiber," Conference of Lasers and Electro Optics CLEO 2005, Long Beach Calif., May 2005.
  9. http://www.crystal-fibre.com.
  10. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, "Accurate optical frequency atlas of the 1.5- m bands of acetylene," J. Opt. Soc. Am. B 13, 2708-2714 (1996).
  11. A. Yariv, Quantum Electronics (John Wiley & sons, 1988), Chap. 8.
  12. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  13. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004). [CrossRef] [PubMed]
  14. W. C. Swann and S. L. Gilbert, "Line centers, pressure shift and pressure broadening of 1530-1560 nm hydrogen cyanide wavelength calibration lines," J. Opt. Soc. Am. B, 22, 1749-1756 (2005). [CrossRef]
  15. Mitsuhiro Kusaba and Jes Henningsen, "The ν1 + ν3 and the ν1 + ν2 + ν1 4 + ν-1 5 combination bands of 13C2H2. Linestrengths, broadening parameters and pressure shifts," J. Mol. Spectrosc 209 (2001). [CrossRef]
  16. K. Shimoda, High-Resolution Laser Spectroscopy, K. Shimoda Ed. (Springer, New York, 1976) pp 11-49, Chap. 2. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited