OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10494–10502

Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array

Kyongsik Choi, Joohwan Kim, Yongjun Lim, and Byoungho Lee  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10494-10502 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel full parallax and viewing-angle enhanced computer-generated holographic (CGH) three-dimensional (3D) display system is proposed and implemented by combining an integral lens array and colorized synthetic phase holograms displayed on a phase-type spatial light modulator. For analyzing the viewing-angle limitations of our CGH 3D display system, we provide some theoretical background and introduce a simple ray-tracing method for 3D image reconstruction. From our method we can get continuously varying full parallax 3D images with the viewing angle about ±6°. To design the colorized phase holograms, we used a modified iterative Fourier transform algorithm and we could obtain a high diffraction efficiency (~92.5%) and a large signal-to-noise ratio (~11dB) from our simulation results. Finally we show some experimental results that verify our concept and demonstrate the full parallax viewing-angle enhanced color CGH display system.

© 2005 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(100.6890) Image processing : Three-dimensional image processing
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Research Papers

Kyongsik Choi, Joohwan Kim, Yongjun Lim, and Byoungho Lee, "Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array," Opt. Express 13, 10494-10502 (2005)

Sort:  Journal  |  Reset  


  1. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, and B. Lee, "Viewing-angle-enhanced integral imaging system using a curved lens array," Opt. Express 12, 421-429 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421</a>. [CrossRef] [PubMed]
  2. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, "Depth-enhanced three-dimensional- two-dimensional convertible display based on modified integral imaging," Opt. Lett. 29, 2734- 2736 (2004). [CrossRef] [PubMed]
  3. P. S. Hilaire, S. A. Benton, and M. Lucente, "Synthetic aperture holography: a novel approach to three dimensional displays," J. Opt. Soc. Am. A 9, 1969-1977 (1992). [CrossRef]
  4. M. Lucente and T. A. Galyean, "Rendering interactive holographic images," in Computer Graphics and Interactive Techniques, S. G. Mair, eds., Proc. SIGGRAPH 95, 387-394 (1995).
  5. J. H. Kulick, G. P. Nordin, A. Parker, S. T. Kowel, R. G. Lindquist, M. Jones, and P. Nasiatka, "Partial pixels: a three-dimensional diffractive display architecture," J. Opt. Soc. Am. A 12, 73-83 (1995). [CrossRef]
  6. J. Yan, S. T. Kowel, H, J. Cho, and C. H. Ahn, "Real-time full-color three-dimensional display with a micromirror array," Opt. Lett. 26, 1075-1077 (2001). [CrossRef]
  7. G. Lippmann, "La photographie integrale," C. R. Acad. Sci.146, 446-451 (1908).
  8. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, "Real-time pickup method for a three-dimensional image based on integral photography," Appl. Opt. 36, 1598-1603 (1997). [CrossRef] [PubMed]
  9. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, "Three-dimensional display using integral photography with dynamically variable image planes," Opt. Lett. 26, 1481-1482 (2001) [CrossRef]
  10. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001). [CrossRef]
  11. S.-H. Shin and B. Javidi, "Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging," Appl. Opt. 41, 5562-5567 (2002). [CrossRef] [PubMed]
  12. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, "Reflection-type integral imaging scheme for displaying three-dimensional images," Opt. Lett. 27, 704-706 (2002). [CrossRef]
  13. B. Lee, S. Jung, and J.-H. Park, "Viewing-angle-enhanced integral imaging by lens switching," Opt. Lett. 27, 818-820 (2002). [CrossRef]
  14. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, "Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array," Opt. Express 13, pp. 8424-8432 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8424</a>. [CrossRef] [PubMed]
  15. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, "Study for wide viewing integral photography using an aspheric Fresnel-lens array," Opt. Eng. 41, 2572-2576 (2002). [CrossRef]
  16. H. Choi, S. Min, S. Jung, J. Park, and B. Lee, "Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays," Opt. Express 11, 927-932 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927</a>. [CrossRef] [PubMed]
  17. J. S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002). [CrossRef]
  18. J. S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, pp. 1996-2002 (2003). [CrossRef] [PubMed]
  19. J. S. Jang and B. Javidi, "Three dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002). [CrossRef]
  20. A. Stern and B. Javidi, "Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging," Appl. Opt. 42, 7036-7042 (2003). [CrossRef] [PubMed]
  21. M. M. Corral, B. Javidi, R. M. Cuenca, and G. Saavedra, "Multifacet structure of observed reconstructed integral images," JOSA A 22, 597-603 (2005). [CrossRef]
  22. H. Arimoto and B. Javidi, "Integral three-dimensional imaging with digital reconstruction," Opt. Lett. 26, 157-159 (2001). [CrossRef]
  23. S. Hong and B. Javidi, "Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing," Opt. Express 12, 4579-4588 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4579</a>. [CrossRef] [PubMed]
  24. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for three-dimensional images," App. Opt. 37, 2034-2045 (1998). [CrossRef]
  25. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999). [CrossRef]
  26. G. Tricoles, "Computer generated holograms: an historical review," Appl. Opt. 26, 4351-4360 (1987). [CrossRef] [PubMed]
  27. O. Bryngdahl, "Computer-generated holograms as generalized optical components," Opt. Eng. 14, 426-435 (1975).
  28. H. Dammann, "Synthetic digital-phase gratings - design, features, applications," in Computer-Generated Holography, S. H. Lee, eds., Proc. SPIE 437, 72-78 (1983).
  29. A. W. Lohmann and D. P. Paris, "Computer generated spatial filters for coherent optical data processing," Appl. Opt. 7, 651-655 (1968). [CrossRef] [PubMed]
  30. T. Okoshi, Three-dimensional Imaging Techniques (Academic Press, New York, 1976)
  31. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, "Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator," Appl. Opt. 33, 2804-2811 (1994). [CrossRef] [PubMed]
  32. U. Efraon, S. T. Wu, and T. D. Bates, "Nematic liquid crystals for spatial light modulators: recent studies," J. Opt. Soc. Am. B 3, 247-252 (1986). [CrossRef]
  33. S. Fukushima, T. Kurokawa, and M. Ohno, "Real-time hologram construction and reconstruction using a high-resolution spatial light modulator," Appl. Phys. Lett. 58, 787-789 (1991). [CrossRef]
  34. L. Ge, M. Duelli, and R. W. Cohn, "Enumeration of illumination and scanning modes from real-time spatial light modulators," Opt. Express 7, 403-416 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-403</a>. [CrossRef] [PubMed]
  35. T.-C. Poon, B. W. Schilling, M. H. Wu, K. Shinoda and Y. Suzuki, "Real-time two-dimensional holographic imaging by using an electron-beam-addressed spatial light modulator," Opt. Lett. 18, 63-65 (1993). [CrossRef] [PubMed]
  36. P. S. Hilaire, S. A. Benton, M. Jucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, "Electronic display system for computational holography," in Practical Holography IV, S. A. Benton, eds., Proc. SPIE 1212, 174-182 (1991). [CrossRef]
  37. T. Ito and K. Okano, "Color electro-holography by three colored reference lights simultaneously incident upon one hologram panel," Opt. Express 12, 4320-4325 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4320</a>. [CrossRef] [PubMed]
  38. K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for autostereoscopic image displays using a modified IFTA," Opt. Express 12, 2454-2462 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2454</a>. [CrossRef] [PubMed]
  39. K. Choi, H. Kim, and B. Lee, "Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms," Opt. Express 12, 5229-5236 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5229</a>. [CrossRef] [PubMed]
  40. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., (Roberts & Company, Englewood, Colorado, 2005).
  41. R. W. Gerchberg and W. O. Saxton, "A practical algorithm of the determination of the phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  42. F. Wyrowsiki, "Diffractive optical elements: iterative calculation of quantized, blazed phase structures," J. Opt. Soc. Am. 7, 961-969 (1990). [CrossRef]
  43. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  44. V. A. Soifer, V. V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis Ltd, 1997).
  45. H. Kim, B. Yang, and B. Lee, "Iterative Fourier transform algorithm with regularization for the optimal design of diffractive optical elements," J. Opt. Soc. Am. A 21, 2353-2365 (2004). [CrossRef]
  46. T. Iwaii and T. Asakura, "Speckle reduction in coherent information processing," Proc. IEEE 84, 765-781 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (1194 KB)     
» Media 2: AVI (2814 KB)     
» Media 3: AVI (1552 KB)     
» Media 4: AVI (2020 KB)     
» Media 5: AVI (2452 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited