OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10558–10563

Simulations of nanoscale interferometer and array focusing by metal heterowaveguides

Bing Wang and Guo Ping Wang  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10558-10563 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a three-dimensional (3D) nanoscale metal heterowaveguide for nanoguiding of light in nanometric cross section. Finite-difference time-domain simulation reveals that a light beam with 35nm×55nm cross section can effectively propagate along the heterowaveguides with 2.84dB/μm energy loss. 3D nanoscale Mach-Zehnder interferometers and metal waveguide arrays constructed by such heterowaveguides show interesting sensing and array nanofocusing properties, implying potential applications in the fields of nanophotonics such as nanosensing, nanolithography, array imaging, and controlling of the flow of light etc.

© 2005 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(220.2560) Optical design and fabrication : Propagating methods
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Virtual Issues
Vol. 1, Iss. 1 Virtual Journal for Biomedical Optics

Bing Wang and Guo Ping Wang, "Simulations of nanoscale interferometer and array focusing by metal heterowaveguides," Opt. Express 13, 10558-10563 (2005)

Sort:  Journal  |  Reset  


  1. J. R. Krenn, J. C. Weeber, A. Dereux, E. Bourillot, J. P. Goudonnet, B. Schider, A. Leitner, F. R. Aussenegg, and C. Girard, "Direct observation of localized surface plasmon coupling," Phys. Rev. B 60, 5029-5033 (1999). [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003). [CrossRef]
  3. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992-1994 (2004). [CrossRef] [PubMed]
  4. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  5. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulations of partical nanometric optical circuits based on surface plasmon polariton gap waveguide," Opt. Express 13, 256-266 (2005). [CrossRef] [PubMed]
  6. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004). [CrossRef]
  7. B.Wang and G. P.Wang, "Directional beaming of light from a nanoslit surrounded by metallic heterostructures," Appl. Phys. Lett. (to be published). [PubMed]
  8. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  9. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
  10. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  11. Z. Y. Li and K. M. Ho, "Anomalous propagation loss in photonic crystal waveguides," Phys. Rev. Lett. 92, 063904 (2004). [CrossRef] [PubMed]
  12. N. S. Stoyanov, D.W.Ward, T. Feurer, and K. A. Nelson, "Terahertz polariton propagation in patterne materials," Nature Mater. 1, 95-98 (2002). [CrossRef]
  13. R. Morandotti, H. S. Eisenberg, Y. Silberberg, M. Sorel, and J. S. Aitchison, "Self-focusing and defocusing in waveguide arrays," Phys. Rev. Lett. 86, 3296-3299 (2001). [CrossRef] [PubMed]
  14. T. Pertsch, T. Zentgraf, U. Peschel, A. Brauer and F Lederer, "Anomalous refraction and diffraction in discrete optical systems," Phys. Rev. Lett. 88, 093901 (2002). [CrossRef] [PubMed]
  15. H. A. Haus and L. Molter-Orr, "Coupled multiple waveguide systems," IEEE J. Quantum Electron. QE-19, 840-844 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited