OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10681–10687

Invisible plasmonic meta-materials through impedance matching to vacuum

J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Ch. Lienau, and Q-Han Park  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10681-10687 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on perfect transmission in two-dimensional plasmonic matamaterials in the terahertz frequency range, in which zeroth order transmittance becomes essentially unity near specific resonance frequencies. Perfect transmission may occur when the plasmonic metamaterials are perfectly impedance matched to vacuum, which is equivalent to designing an effective dielectric constant around εr =-2 . When the effective dielectric constant of the metamaterial is tuned towards εr and the hole coverage is larger than 0.2, strong evanescent field builds up in the near field, making perfect transmission possible.

© 2005 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(160.3900) Materials : Metals
(240.6680) Optics at surfaces : Surface plasmons
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Research Papers

J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Ch. Lienau, and Q-Han Park, "Invisible plasmonic meta-materials through impedance matching to vacuum," Opt. Express 13, 10681-10687 (2005)

Sort:  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), p. 356.
  2. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).
  3. R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928 (1935). [CrossRef]
  4. Lord Rayleigh, "On the passage of electric waves through tubes, or the vibrations of dielectric cylinders," Phil. Mag. 14, 60 (1907).
  5. Lord Rayleigh, "On the dynamical theory of gratings," Proc. R. Soc. A 79, 399 (1907). [CrossRef]
  6. R. Ulrich, "Interference filters for the far infrared," Appl. Opt. 7, 1987 (1968). [CrossRef] [PubMed]
  7. R. Ulrich, "Preparation of grids for far infrared filters," Appl. Opt. 8, 319 (1969). [CrossRef] [PubMed]
  8. C. C. Chen, "Transmission through a conducting screen perforated periodically with apertures." IEEE trans. Microwave Theory Tech. 18, 627 (1970). [CrossRef]
  9. P. J. Bliek, L. C. Botten, R. Deleuil, R. C. MC Phedran, and D. Maystre, "Inductive grids in the region of diffraction anomalies: theory, experiment, and applications," IEEE trans. Microwave Theory Tech. 28, 1119 (1980). [CrossRef]
  10. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667- 669 (1998). [CrossRef]
  11. H. Cao and A. Nahata, "Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures," Opt. Express 12, 3664-3672 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a> [CrossRef] [PubMed]
  12. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896 (2004). [CrossRef] [PubMed]
  13. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  14. S. Astilean, Ph. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265 (2000). [CrossRef]
  15. M.M.J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002). [CrossRef]
  16. F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002). [CrossRef]
  17. J. T. Shen, Peter B. Catrysse, and Shanhui Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  18. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005). [CrossRef]
  19. L. M. Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004), [CrossRef] [PubMed]
  20. F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E 72, 016608 (2005). [CrossRef]
  21. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  22. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, E. Sano, "Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays," Opt. Lett. 30, 1210 (2005). [CrossRef] [PubMed]
  23. V. Schmidt, W. Husinsky, and G. Betz, "Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale," Phys. Rev. Lett. 85, 3516 (2000). [CrossRef] [PubMed]
  24. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, "Design and performance of a THz emission and detection setup based on a semi-insulation GaAs emitter," Rev. Sci. Instrum. 73, 1715 (2002). [CrossRef]
  25. G. Zhao, R. N. Schouten, N van der Valk, W. Th. Wenckebach and P. C. M. Planken, "A terahertz system using semi-large emitters: noise and performance characteristics," Phys. Med. Biol. 47, 3699 (2002). [CrossRef] [PubMed]
  26. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, "Tunable terahertz generation using femtosecond pulse shaping," Appl. Phys. Lett. 81, 13 (2002). [CrossRef]
  27. E. D. Palik (Ed.), "Handbook of Optical Constants of Solids" (Academic Press, San Diego, 1985).
  28. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004). [CrossRef] [PubMed]
  29. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97 (2005). [CrossRef]
  30. K. G. Lee, and Q-Han Park, "Coupling of surface plasmon polaritions and light in metallic nanoslits," Phys. Rev. Lett. 95, 103902 (2005). [CrossRef] [PubMed]
  31. H. Lochbihler and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited