OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10742–10748

Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides

X. Yu, L. Scaccabarozzi, J. S. Harris, Jr., P. S. Kuo, and M. M. Fejer  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10742-10748 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated quasi-phase-matched AlGaAs waveguides for continuous-wave second-harmonic generation (SHG) pumped around 1.55 μm. We find that the losses, which limit the conversion efficiency of this type of waveguide, are resulted from two corrugations—the initial template corrugation and the regrowth-induced domain-boundary corrugations. We are able to reduce the waveguide loss by improving the growth conditions. The waveguide loss is 6–7 dB/cm at 1.55 μm, measured using the Fabry-Perot method. A record internal SHG conversion efficiency of 23 %W-1 for AlGaAs waveguides is achieved using a 5-mm-long waveguide with a pump wavelength of 1.568 μm.

© 2005 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Research Papers

X. Yu, L. Scaccabarozzi, J. S. Harris, Jr., P. S. Kuo, and M. M. Fejer, "Efficient continuous wave second harmonic generation pumped at 1.55 µm in quasi-phase-matched AlGaAs waveguides," Opt. Express 13, 10742-10748 (2005)

Sort:  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum. Electron. QE-28, 2631-2654 (1992). [CrossRef]
  2. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, "All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion," Appl. Phys. Lett. 79, 904-906 (2001). [CrossRef]
  3. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phasematching using an isotropic nonlinear optical material," Nature 391, 463-466 (1998). [CrossRef]
  4. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, "Second-harmonic generation at λ = 1.6 µm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Appl. Phys. Lett. 72, 2942-2944 (1998). [CrossRef]
  5. S. Venugopal Rao, K. Moutzouris and M. Ebrahimzadeh, "Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques," J. Opt. A: Pure Appl. Opt. 6, 569-584 (2004). [CrossRef]
  6. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, V. Berger, M. Calligaro, and V. Ortiz, "Efficient second-harmonic generation in birefringently phase-matched GaAs/Al2O3 waveguides," Opt. Lett. 26, 1785-1787 (2001). [CrossRef]
  7. S. Venugopal Rao, K. Moutzouris, M. Ebrahimzadeh, A. De Rossi, G. Gintz,M. Calligaro, V. Ortiz, and V. Berger, "Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique," Opt. Commun. 213, 223-228 (2002). [CrossRef]
  8. K. Moutzouris, S. Venugopal Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, "Second-harmonic generation through optimized modal phase matching in semiconductor waveguides," Appl. Phys. Lett. 83, 620-622 (2003). [CrossRef]
  9. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, "Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides," Appl. Phys. Lett. 84, 2974-2976 (2004). [CrossRef]
  10. S. J. B. Yoo, R. Bhat, C. Caneau, and M. A. Koza, "Quasi-phase-matched second-harmonic generation in AlGaAs waveguides with periodic domain inversion achieved by wafer-bonding," Appl. Phys. Lett. 66, 3410-3412 (1995). [CrossRef]
  11. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, "Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding," Appl. Phys. Lett. 68, 2609-2611 (1996). [CrossRef]
  12. C. Q. Xu, K. Takemasa, K. Nakamura, K. Shinozaki, H. Okayama, and T. Kamijoh, "Device length dependence of optical second-harmonic generation in AlGaAs quasiphase matched waveguides," Appl. Phys. Lett. 70, 1554-1556 (1997). [CrossRef]
  13. S. Koh, T. Kondo, Y. Shiraka and R. Ito, "GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices," J. Cryst. Growth. 227/228, 183-192 (2001). [CrossRef]
  14. X. Yu, L. Scaccabarozzi, O. Levi, T. J. Pinguet, M. M. Fejer and J. S. Harris, "Template design and fabrication for low loss orientation-patterned nonlinear AlGaAs waveguides pumped at 1.55 µm," J. Cryst. Growth. 251, 794-799 (2003). [CrossRef]
  15. A much higher value is reported for pulsed operation but a pulse duty cycle factor has to be multiplied in order to convert a pulsed SHG efficiency to a CW SHG efficiency.
  16. H. Kroemer, "Sublattice allocation and antiphase domain suppression in polar-on-nonpolar nucleation ," J Vac. Sci. Tech. B. 5, 1150-1154 (1987). [CrossRef]
  17. R. S. Williams, M. J. Ashwin, T. S. Jonesa and J. H. Neave, "Ridge structure transformation by group-III species modification during the growth of .Al,Ga.As on patterned substrates," J. Appl. Phys. 97, 0449051-0449055 (2005). [CrossRef]
  18. E. Gil-Lafon, J. Napierala, D. Castelluci, A. Pimpinelli, R. Cadoret, and B. Gérard, "Selective growth of GaAs by HVPE: keys for accurate control of the growth morphologies," J. Cryst. Growth 222, 482-496 (2001). [CrossRef]
  19. R. T. Feuchter and C. Thirstrup, "High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity," IEEE Photon. Technol. Lett. 6, 1244-1247 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited