OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10795–10800

Surface plasmon polariton propagation and combination in Y-shaped metallic channels

Hongtao Gao, Haofei Shi, Changtao Wang, Chunlei Du, Xiangang Luo, Qiling Deng, Yaoguang Lv, Xiangdi Lin, and Hanmin Yao  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10795-10800 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation and combination of surface plasmon polaritons (SPPs) in Y-shaped metallic nanochannels are investigated numerically via finite difference time domain (FDTD). It is shown that the behavior of SPPs in nano-size channels resembles that of light guiding in conventional waveguides, and SPPs can also be combined effectively with appropriately designed structures. The loss associated with metal absorption and scattering with the multiple reflections between slit openings on the bend angle are analyzed numerically. The Fabry–Perot cavity effect displayed by SPPs traveling in channels with finite length is discussed as well.

© 2005 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Hongtao Gao, Haofei Shi, Changtao Wang, Chunlei Du, Xiangang Luo, Qiling Deng, Yaoguang Lv, Xiangdi Lin, and Hanmin Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005)

Sort:  Journal  |  Reset  


  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, Heidelberg 1988).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T.W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  6. Z. J. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2003). [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T.W. Ebbessen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  8. K. Hasegawa, J. U. Nockel, and M. Deutsch, "Surface plasmon polaritons propagation around bends at a metal-dielectric interface," Appl. Phys. Lett. 84, 1835-1837 (2004). [CrossRef]
  9. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1159 (2003). [CrossRef]
  10. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 12, 3055-3065 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3055.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3055.</a> [CrossRef] [PubMed]
  11. X. Luo, H. Wang, J.P. Shi, and H. Yao, "Light propagation through unperforated metallic structure: Plasmon resonance induced transparency," Mod. Phys. Lett. B 18, 1181-1188 (2004). [CrossRef]
  12. X. Luo, J.P. Shi, H. Wang, and G. Yu, "Surface plasmon polariton radiation from metallic photonic crystal slabs breaking the diffraction limit: Nano-storage and nano-fabrication," Mod. Phys. Lett. B 18, 945-953 (2004). [CrossRef]
  13. X. Luo and T. Ishihara, "Sub-100-nm photolithography based on plasmon resonance," Japan. J. Appl. Phys. 43, 4017-4021 (2004). [CrossRef]
  14. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  15. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005) [CrossRef] [PubMed]
  16. X. Luo, Y. G. Lv, C. L. Du, J. X. Ma, H. Wang, H. Y. Li, G. R.Yang, and H. M. Yao, "Spatial distribution of surface plasmon polariton from metallic nanostructures," Mod. Phys. Lett. B 19, 599-606 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited