OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10815–10822

Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires

M. Wåchter, M. Nagel, and H. Kurz  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10815-10822 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, measurements and numerical field simulations highlighting the characteristic propagation behavior of THz surface-wave pulses along bare and dielectrically coated metal wires are presented. An optoelectronic time-domain measurement setup with a freely-positionable probe-tip is used for detection of electrical field transients after different propagation lengths along the wires. Frequency-dependent attenuation and dispersion parameters are determined in the range of 0.02 THz to 0.4 THz. Our results are in good agreement with numerical field simulations considering the propagation of an axial Sommerfeld surface-wave with metallic and dielectric losses. We discuss the influence of wire radius on wave propagation behavior and the application of THz single-wires for sensing.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(320.5550) Ultrafast optics : Pulses

ToC Category:
Research Papers

M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005)

Sort:  Journal  |  Reset  


  1. P. H. Siegel, "Terahertz Technology in Biology and Medicine," IEEE Trans. Microw. Th. and Tech. 52, 2438-2447 (2004). [CrossRef]
  2. M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, "Integrated THz technology for label-free genetic diagnostics," Appl. Phys. Lett. 80, 154-156 (2002). [CrossRef]
  3. C. A. Schmuttenmaer, "Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy," Chem. Rev. 104, 1759-1779 (2004). [CrossRef] [PubMed]
  4. X.-C. Zhang, "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol. 47, 3667-3677, (2002). [CrossRef] [PubMed]
  5. M. M. Awad and R. A. Cheville, "Transmission terahertz waveguide-based imaging below the diffraction limit," Appl. Phys. Lett. 86, 221107/1-3 (2005). [CrossRef]
  6. D. L. Woolard, E. R. Brown, M. Pepper, and M. Kemp, "Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?," Proc. IEEE 93, 1722-1743 (2005). [CrossRef]
  7. K. Wang and M Mitteman, "Metall wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  8. H. Hertz, Gesammelte Werke (J. A. Barth , Leipzig, 1894).
  9. A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen längs eines Drahtes," Ann. Phys. u. Chemie 67, 233 - 290 (1899).
  10. M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Ant. and Prop. 10, 246-254 (1962). [CrossRef]
  11. F. Sobel, F. Wentworth and J. C. Wiltse, "Quasi-Optical Surface Waveguide and Other Components for the 100- to 300-Gc Region," IEEE Trans. MTT 9, 512-518 (1961). [CrossRef]
  12. G. Gallot, S. P. Jamison, R. W. McGowan, and D Grischkowsky, "Terahertz Waveguides," J. Opt. Soc. Am. B 17, 851-863 (2000). [CrossRef]
  13. R. K. Hoffmann, Integrated Microwave Circuits (Springer, Berlin 1983).
  14. N. Marcuvitz, "Coaxial Waveguides" in Waveguide Handbook (McGraw-Hill, New York, 1951), pp. 72-80.
  15. P. W. Hawkes, The Physics of Transmission Lines at High and Very High Frequencies (Academic Press, 1970).
  16. G. Goubau, "Surface Waves and Their Application to Transmission Lines," J. Appl. Phys. 21, 1119-1128 (1950). [CrossRef]
  17. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904/1-3 (2005). [CrossRef]
  18. Y. Xu and R.G. Bosisio, "Study of Goubau lines for submillimetre wave and terahertz frequency applications," IEE Proc.-Microw. Antennas Propag. 151, 460-464 (2004). [CrossRef]
  19. F. E. Donay, D. Grischkowsky, and C.-C. Chi, "Carrier lifetime versus ion-implantation dose in silicon on sapphire," Appl. Phys. Lett. 50, 460-462 (1987). [CrossRef]
  20. Q. Cao and J. Jahns, "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005). [CrossRef] [PubMed]
  21. M. J. Hagmann, "Isolated Carbon Nanotubes as High-Impedance Transmission Lines for Microwave Through Terahertz Frequencies," IEEE Trans. Nanotech. 4, 289-296 (2005). [CrossRef]
  22. G. Goubau, Waves on interfaces. IRE Trans. on Ant. and. Prop. 7, 140-146 (1959). [CrossRef]
  23. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire using milled grooves," Opt. Express 13, 7028-7034 (2005). [CrossRef] [PubMed]
  24. H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low- dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997). [CrossRef]
  25. N. C. J. van der Valk and P. C. M. Planken, "Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires," Appl. Phys. Lett. 87, 071106/1-3 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited