OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10846–10853

Single photon source characterization with a superconducting single photon detector

Robert H. Hadfield, Martin J. Stevens, Steven S. Gruber, Aaron J. Miller, Robert E. Schwall, Richard P. Mirin, and Sae Woo Nam  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10846-10853 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g(2)(τ). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

© 2005 Optical Society of America

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Research Papers

Robert H. Hadfield, Martin J. Stevens, Steven S. Gruber, Aaron J. Miller, Robert E. Schwall, Richard P. Mirin, and Sae Woo Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-10853 (2005)

Sort:  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys. 74, 145-196 (2002) [CrossRef]
  2. T. E. Ingerson, R. J. Kearney, R. L. Coulter, "Photon counting with photodiodes," Appl. Op. 22, 2013-2018 (1983) [CrossRef]
  3. R. G. W. Brown, K .D. Ridley, J. G. Rarity, "Characterization of silicon avalanche photodiodes for photon-correlation measurements .1. passive quenching," Appl. Opt. 25, 4122-4126 (1986) [CrossRef] [PubMed]
  4. R. G. W. Brown, R. Jones, J. G. Rarity, K. D. Ridley, "Characterization of silicon avalanche photodiodes for photon-correlation measurements .2. active quenching," Appl. Opt. 26, 2383-2389 (1987) [CrossRef] [PubMed]
  5. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, "High-efficiency single-photon detectors," Phys. Rev. A 48, 867-870 (1993) [CrossRef]
  6. S. Cova, A. Longoni, A. Andreoni, "Towards picosecond resolution with single photon avalanche diodes," Review of Scientific Instruments 52, 408-412 (1981) [CrossRef]
  7. F. Zappa, A. Lacaita, S. Cova, P. Webb, "Nanosecond single-photon timing with InGaAs/InP photodiodes," Opt. Lett. 19, 846-848 (1994) [CrossRef] [PubMed]
  8. D. Bethune, W. Risk, "An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000) [CrossRef]
  9. J. S. Vickers, R. Ispasoiu, D. Cotton, J. Frank, B. Lee, S. Kasapi Proc. IEEE 16th Annual Meeting Lasers and Electro-Optics Society, LEOS 2003 (Institute of Electrical and Electronics Engineers, New York) 2, 600 - 601 (2003)
  10. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, P. R. Tapster, "Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes" Appl. Opt. 39, 6746-6753 (2000) [CrossRef]
  11. D. Rosenberg, A.E. Lita, A. J. Miller, S. W. Nam, R. E. Schwall, "Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities," IEEE Trans, Appl Superconductivity 15, 575-578 (2005) [CrossRef]
  12. D. Rosenberg, A. E. Lita, A. J. Miller, S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev A, Rapid Comm. 71, 061803 R (2005)
  13. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001) [CrossRef]
  14. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirov, G. N. Gol’tsman, A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared," Appl. Phys. Lett. 80, 4687-4689 (2002) [CrossRef]
  15. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Golt’sman, M. Currie, W. Lo, K. Wilsher K., J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5430 (2004) [CrossRef]
  16. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O.Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, R. Sobolewski "Ultrafast single-photon detectors for near-infrared-wavelength quantum communications," J. Modern Opt. 51, 1447-1458 2004
  17. M. Tinkam Introduction to Superconductivitiy McGraw-Hill 2nd Ed 1996
  18. R. Radebaugh "Refrigeration for Superconductors," Proceedings of the IEEE 92, 1719-1734 (2004). [CrossRef]
  19. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single photon turnstile device," Science 290, 2282 (2000) [CrossRef] [PubMed]
  20. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered single photons from a quantum dot," Phys. Rev. Lett. 86, 1502-1505 (2001) [CrossRef] [PubMed]
  21. R. Hanbury-Brown, R. Q. Twiss ‘ Correlation between photons in two coherent beams of light’ Nature 117, 27 (1956) [CrossRef]
  22. Losses within our SSPD system include free space to fiber outside the cryostat and fiber to SSPD inside the cryostat.
  23. The time window gating method was not employed in the experiments described here as the dark count rate was already sufficiently low.
  24. D. Dalacu, D. Poitras, J. Lefbevre, P.J. Poole, G. C. Aers, R.L. Williams, "InAs/InP quantum dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.5 µm," Appl. Phys. Lett. 84, 3235-3237 (2004). [CrossRef]
  25. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, T. Buchs, A. Fiore, E. Pelucchi, E. Kapon, "Growth and characterization of single quantum dots emitting at 1300 nm," Appl. Phys. Lett. 86, 101908-101910 2005 [CrossRef]
  26. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevauz, A. J. Shields, P. Atkinson, D. A. Ritchie, "On demand single photon source for 1.3 ìm telecom fiber," Appl. Phys. Lett. 86, 201111-201113(2005) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited