OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 26 — Dec. 26, 2005
  • pp: 10865–10872

Optical characterization of a GaAs/GaAlAs asymmetric microcavity structure

Der-Yuh Lin  »View Author Affiliations

Optics Express, Vol. 13, Issue 26, pp. 10865-10872 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A GaAs/GaAlAs-based asymmetric microcavity structure was studied by various optical characterization techniques. The angle-dependent reflectance (R) spectra showed that the cavity mode (CM) superimposed on quantum well excitonic transitions. The resonance enhancement effect between the excitonic transitions and the CM in the weak-coupling regime was explored using the angle-dependent differential surface photovoltage spectroscopy (DSPS) and photoluminescence (PL), and temperature-dependent PL. In this work, we have also implemented a new modulation technique, namely, the angle modulation reflectance (AMR) to decouple the CM from the overlapped excitonic transitions. The AMR technique has been demonstrated to be an efficient method for the study of weak coupling effect in the microcavity structure.

© 2005 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5230) Optoelectronics : Photoluminescence
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Research Papers

Der-Yuh Lin, "Optical characterization of a GaAs/GaAlAs asymmetric microcavity structure," Opt. Express 13, 10865-10872 (2005)

Sort:  Journal  |  Reset  


  1. G. Du, K. A. Stair, G. Devane, J. Zhang, R. P. H. Chang, C. W. White, X. Li, Z. Wang, and Y. Liu, "Vertical-cavity surface-emitting laser with a thin metal mirror fabricated by double implantation using a tungsten wire mask," Semicond. Sci. Technol. 11, 1734-1736 (1996). [CrossRef]
  2. C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron 6, 978-987 (2000). [CrossRef]
  3. H. C. Lin, D. A. Louderback, G. W. Pickrell, M. A. Fish, J. J. Hindi, M. C. Simpson, and P. S. Guilfoyle, "Vertical-cavity surface-emitting lasers with monolithically integrated horizontal waveguides," IEEE Photonics Technol. Lett. 17, 10-12 (2005). [CrossRef]
  4. C. M. Tsai and C. P. Lee, "High-performance two-wavelength asymmetric Fabry-Perot modulator with a decoupled cavity design," IEEE J. Quantum Electron. 34, 427-430 (1998). [CrossRef]
  5. P. Royo, R. P. Stanley, M. Ilegems, K. Streubel, and K. H. Gulden, "Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes," J. Appl. Phys. 91, 2563-2568 (2002). [CrossRef]
  6. P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, "All-polymer optoelectronic devices," Science 285, 233-236 (1999). [CrossRef] [PubMed]
  7. E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, "Resonant cavity light-emitting diode," Appl. Phys. Lett. 60, 921-923 (1992). [CrossRef]
  8. A. Kavokin, G. Malpuech, and B. Gil, "Semiconductor microcavities: towards polariton lasers," MRS Internet J. Nitride Semicond. Res. 8, 1-25 (2003).
  9. S. D. Brorson, H. Yokoyama, and E. P. Ippen, "Spontaneous emission rate alteration in optical waveguide structures," IEEE J. Quantum Electron. 26, 1492-1499 (1990). [CrossRef]
  10. M. Yamanishi, "Combined quantum effects for electron and photon systems in semiconductor microcavity light emitters," Prog. Quantum Electron. 19, 1-39 (1995). [CrossRef]
  11. T. Baba, T. Hamano, F. Koyama, and K. Iga, "Spontaneous emission factor of a microcavity DBR surface-emitting laser," IEEE J. Quantum Electron. 27, 1347-1358 (1991) [CrossRef]
  12. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities," Appl. Phys. Lett. 57, 2814-2816 (1990). [CrossRef]
  13. E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, "Reflection and absorption spectra from microcavities with resonant Bragg quantum wells," J. Opt. Soc. Am. B 13, 1061-1068 (1996). [CrossRef]
  14. A. V. Kavokin and M. A. Kaliteevski, "Light-absorption effect on Bragg interference in multilayer semiconductor heterostructures," J. Appl. Phys. 79, 595-598 (1996). [CrossRef]
  15. J. S. Liang, S. D. Wang, Y. S. Huang, L. Malikova, F. H. Pollak, J. P. Debray, R. Hoffman, A. Amtout, and R. A. Stall, "Differential surface photovoltage spectroscopy characterization of a 1.3 μm InGaAlAs/InP vertical-cavity surface-emitting laser structure," J. Appl. Phys. 93, 1874-1878 (2003). [CrossRef]
  16. J. L. Shen, C. Y. Chang, W. C. Chou, M. C. Wu, and Y. F. Chen, "Temperature dependence of the reflectivity in absorbing Bragg reflectors," Opt. Express 9, 287-293 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-287">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-287</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited