OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 3 — Feb. 7, 2005
  • pp: 801–820

Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper

Paul E. Barclay, Kartik Srinivasan, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 13, Issue 3, pp. 801-820 (2005)
http://dx.doi.org/10.1364/OPEX.13.000801


View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique is demonstrated which efficiently transfers light between a tapered standard single-mode optical fiber and a high-Q, ultra-small mode volume, silicon photonic crystal resonant cavity. Cavity mode quality factors of 4.7×104 are measured, and a total fiber-to-cavity coupling efficiency of 44% is demonstrated. Using this efficient cavity input and output channel, the steady-state nonlinear absorption and dispersion of the photonic crystal cavity is studied. Optical bistability is observed for fiber input powers as low as 250 µW, corresponding to a dropped power of 100 µW and 3 fJ of stored cavity energy. A high-density effective free-carrier lifetime for these silicon photonic crystal resonators of ~0.5 ns is also estimated from power dependent loss and dispersion measurements.

© 2005 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Research Papers

History
Original Manuscript: December 1, 2004
Revised Manuscript: January 13, 2005
Published: February 7, 2005

Citation
Paul Barclay, Kartik Srinivasan, and Oskar Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-801


Sort:  Journal  |  Reset  

References

  1. K. Srinivasan, P. Barclay, O. Painter, J. Chen, A. X. Cho, and C. Gmachl, �??Experimental demonstration of a high quality factor photonic crystal microcavity,�?? Appl. Phys. Lett. 83, 1915�??1917 (2003). [CrossRef]
  2. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944�??947 (2003). [CrossRef] [PubMed]
  3. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, �??Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,�?? Phys. Rev. B 70, 081306(R) (2004). [CrossRef]
  4. B. Lev, K. Srinivasan, P. E. Barclay, O. Painter, and H. Mabuchi, �??Feasibility of detecting single atoms using photonic bandgap cavities,�?? Nanotechnology 15, S556�??S561 (2004). [CrossRef]
  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, �??Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,�?? Nature 432, 200�??203 (2004). [CrossRef] [PubMed]
  6. J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, and T. Reinecke, �??Strong coupling in a single quantum dot-semiconductor microcavity system,�?? Nature 432, 197�??200 (2004). [CrossRef] [PubMed]
  7. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, and J. Bloch, �??Exciton photon strong-coupling regime for a single quantum dot in a microcavity,�?? <a href=" http://arxiv.org/quant-ph/0411076 (2004)">http://arxiv.org/quant-ph/0411076 </a>
  8. A. R. Cowan and J. F. Young, �??Optical bistability involving photonic crystal microcavities and Fano line shapes,�?? Phys. Rev. E 68, 046606 (2003). [CrossRef]
  9. M. Solja�?i�?, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, �??Optimal bistable switching in nonlinear photonic crystals,�?? Phys. Rev. E 66, 055601 (2002). [CrossRef]
  10. J.-M. Gerard, �??Solid-state cavity-quantum electrodynamics with self-assembled quantum dots�?? in Single Quantum Dots: Fundamentals, Applications, and New Concepts, P. Michler ed. (Springer-Verlag, Germany, 2003), 269�??314.
  11. G. Brassard, N. Lutkenhaus, T. Mor, and B. Sanders, �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330�??1333 (2000). [CrossRef] [PubMed]
  12. E. Knill, R. Laflamme, and G. Millburn, �??A scheme for efficient quantum computation with linear optics,�?? Nature 409, 46�??52 (2001). [CrossRef] [PubMed]
  13. A. Kiraz, M. Atatüre, and A. Imamo�?lu, �??Quantum-dot single-photon sources: Prospects for applications in linear optics quantum optics processing,�?? Phys. Rev. A 69, 032305 (2004). [CrossRef]
  14. M. F. Yanik, S. Fan, and M. Solja�?i�?, �??High-contrast all-optical bistable switching in photonic crystal microcavities,�?? Appl. Phys. Lett. 83, 2739�??2781 (2003). [CrossRef]
  15. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, �??An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,�?? Phys. Rev. Lett. 89, 299602 (2002). [CrossRef]
  16. S. J. McNab, N. Moll, and Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927�??2939 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a> [CrossRef] [PubMed]
  17. M. Notomi, A. Shinya, S. Mitsugi, and H.-Y. Ryu, �??Waveguides, resonators and their coupled elements in photonic crystal slabs,�?? Opt. Express 12, 1551�??1561 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1551</a> [CrossRef] [PubMed]
  18. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. V. Campenhout, P. Bienstman, R. Baets, V. Wiaux, and S. Beckx, �??Basic structures for photonic integrated circuits in silicon-on-insulator,�?? Opt. Express 12, 1583�??1591 (2004) <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1583">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1583</a> [CrossRef] [PubMed]
  19. A. R. Cowan, G. W. Rieger, and J. F. Young, �??Nonlinear transmission of 1.5 m pulses through single-mode silicon-on-insulator waveguide structures,�?? Opt. Expr. 12, 1611�??1621 (2004), <a href "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1611</a> [CrossRef]
  20. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, �??Efficient input and output optical fiber coupling to a photonic crystal waveguide,�?? Opt. Lett. 29, 697�??699 (2004). [CrossRef] [PubMed]
  21. M. Lon�?ar, D. Nedeljkovi�?, T. Doll, J. Vu¡�?kovi�?, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937�??1939 (2000). [CrossRef]
  22. J. Knight, G. Cheung, F. Jacques, and T. Birks, �??Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,�?? Opt. Lett. 22, 1129�??1131 (1997). [CrossRef] [PubMed]
  23. P. E. Barclay, K. Srinivasan, and O. Painter, �??Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,�?? J. Opt. Soc. Am. B 20, 2274�??2284 (2003). [CrossRef]
  24. K. Srinivasan and O. Painter, �??Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two-Dimensional Slab Waveguides,�?? Opt. Express 10, 670�??684 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a> [PubMed]
  25. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, �??Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,�?? Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  26. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, �??Direct measurement of the quality factor in a two-dimensional photonic crystal microcavity,�?? Opt. Lett. 26, 1903�??1905 (2001). [CrossRef]
  27. M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom wavelengths,�?? Appl. Phys. Lett. 82, 2954�??2956 (2003). [CrossRef]
  28. T. Liang and H. Tsang, �??Role of free carriers from two photon absorption in Raman amplification in silion-oninsulator waveguides,�?? Appl. Phys. Lett. 84, 2745�??2757 (2004). [CrossRef]
  29. K. Kanamoto, S. Lan, N. Ikeda, Y. Tanaka, Y. Sugimoto, K. Asakawa, and H. Ishikawa, �??Single Photonic-Crystal Defect Switch for All-Optical Ultrafast Operation Using Two Photon Absorption,�?? IEICE Trans. Electron. E87-C, 1142�??1146 (2004).
  30. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, �??Nonlinear optical tuning of a two-dimensional silicon photonic crystal,�?? Phys. Rev. B 70, 205110 (2004). [CrossRef]
  31. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, NY, 1993).
  32. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066611 (2002). [CrossRef]
  33. R. A. Soref and B. R. Bennett, �??Electrooptical Effects in Silicon,�?? IEEE J. Quan. Elec. 23, 123�??129 (1987). [CrossRef]
  34. In using this approximate theory, in which regions of high two-photon absorbed power are correlated with high steady-state carrier density, we better approximate the cavity �??volume�?? of interest, and consequently the effective free-carrier lifetime better represents the average time a free-carrier stays in the region of the PC cavity mode.
  35. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081�??1084 (2004). [CrossRef] [PubMed]
  36. V. R. Almeida and M. Lipson, �??Optical bistability on a silicon chip,�?? Opt. Lett. 29, 2387�??2389 (2004). [CrossRef] [PubMed]
  37. T. Carmon, L. Yang, and K. J. Vahala, �??Dynamical thermal behavior and thermal self-stability of microcavities,�?? Opt. Express 12, 4742�??4750 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742</a> [CrossRef] [PubMed]
  38. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, CA, 2003).
  39. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman amplification in Silicon waveguides,�?? Opt. Express 12, 2774�??2780 (2004), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a> [CrossRef] [PubMed]
  40. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85, 2196�??2198 (2004). [CrossRef]
  41. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, �??Probing the dispersive and spatial properties of planar photonic crystal waveguide modes via highly efficient coupling from optical fiber tapers,�?? Appl. Phys. Lett. 85, 4�??6 (2004). [CrossRef]
  42. H. M. Gibbs, Optical bistability: controlling light with light (Academic Press, Orlando, FL, 1985).
  43. Note that the sharp transition edge associated with optical bistability occurs at the cavity resonance wavelength when scanning from blue to red.
  44. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, �??Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,�?? Appl. Phys. Lett. 85, 3693�??3695 (2004). [CrossRef]
  45. P.-T. Lee, J. R. Cao, S.-J. Choi, Z.-J.Wei, J. O�??Brien, and P. D. Dapkus, �??Operation of photonic crystal membrane lasers above room temperature,�?? Appl. Phys. Lett. 81, 3311�??3313 (2002). [CrossRef]
  46. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, �??Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,�?? J. Lightwave Technol. 15, 505�??518 (1997). [CrossRef]
  47. G. Cocorullo and I. Rendina, �??Thermo-optical modulation at 1.5 m in silicon etalon,�?? IEE Electron Lett. 28, 83�??85 (1992). [CrossRef]
  48. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, �??An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity,�?? Phys. Rev. Lett. 89, 299602 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited