OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 3 — Feb. 7, 2005
  • pp: 826–835

Resonant add-drop filter based on a photonic quasicrystal

J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres  »View Author Affiliations

Optics Express, Vol. 13, Issue 3, pp. 826-835 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical study of optical properties of an octagonal quasi-periodic lattice of dielectric rods. We report on a complete photonic bandgap in TM polarization up to extremely low dielectric constants of rods. The first photonic bandgap remains open down to dielectric constant as small as ε=1.6 (n=1.26). The properties of an optical microcavity and waveguides are examined for the system of rods with dielectric constant ε=5.0 (n=2.24) in order to design an add-drop filter. Proposed add-drop filter is numerically characterized and further optimized for efficient operation. The two-dimensional finite difference time domain method was exploited for numerical calculations. We provide a numerical evidence of effective add-drop filter based on low index material, thus opening further opportunities for application of low refractive index materials in photonic bandgap optics.

© 2005 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.7390) Optical devices : Waveguides, planar
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: December 16, 2004
Revised Manuscript: January 22, 2005
Published: February 7, 2005

J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. Sotomayor Torres, "Resonant add-drop filter based on a photonic quasicrystal," Opt. Express 13, 826-835 (2005)

Sort:  Journal  |  Reset  


  1. D. Rafizadeh, et al., �??Waveguide coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,�?? Opt. Lett. 22, 1244-1246 (1997). [CrossRef] [PubMed]
  2. S. C. Hagness, et al., �??FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,�?? J. Lightwave Technol. 15, 2154-2165 (1997). [CrossRef]
  3. B. E. Little, et al., �??Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,�?? IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  4. D. J. W. Klunder, et al., �??Experimental and numerical study of SiON microresonators with air and polymer cladding,�?? J. Lightwave Technol. 21, 1099-1110 (2003). [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960 (1998). [CrossRef]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.</a> [CrossRef] [PubMed]
  7. S. S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, �??Duplexer using microwave photonic band gap structure,�?? Appl. Phys. Lett. 76, 2301�??2303 (2000). [CrossRef]
  8. M. Bayindir, E. Ozbay, �??Dropping of electromagnetic waves through localized modes in three-dimensional photonic bandgap structures,�?? Appl. Phys Lett. 81, 4514-4516 (2002). [CrossRef]
  9. T. Asano, B.S. Song, Y. Tanaka,and S. Noda, "Investigation of a channel-add/drop filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab," Appl. Phys Lett. 83, 407 (2003). [CrossRef]
  10. M. Qiu, B. Jaskorzynska, �??Design of a channel drop filter in a two-dimensional triangular photonic crystal,�?? Appl. Phys. Lett. 83, 1074-1076 (2003). [CrossRef]
  11. J.-B. Suck, M. Schreiber and P. Häussler, eds., Quasicrystals (Springer, Berlin, 2002).
  12. Y. S. Chan, C. T. Chang and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  13. S. S. M. Cheng, L. M. Li, C. T. Chan and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4098 (1999). [CrossRef]
  14. M. Hase, H. Miyazaki, M. Egashira, N. Shinya, K. M. Kojima, and S. Uchida, "Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals", Phys. Rev. B 66, 214205 (2002). [CrossRef]
  15. Wang K.; David S.; Chelnokov A.; Lourtioz J.-M., �??Photonic band gaps in quasicrystal-related approximant structures,�?? J. Mod. Optics 50, 2095-2105 (2003)
  16. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. De La Rue and P. Millar, "Two-dimensional Penrose-tiled photonic quasicrystals; diffraction of light and fractal density of modes," J. Mod. Opt. 47, 1771- 1778 (2000).
  17. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar and R. M. De La Rue, �??Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals,�?? J. Phys. Cond. Matt. 13, 10459-10470 (2001). [CrossRef]
  18. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing Action due to the Two-Dimensional Quasiperiodicity of Photonic Quasicrystals with a Penrose Lattice," Phys. Rev. Lett. 92, pp.123906. [PubMed]
  19. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumerg and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  20. X. Zhang, Z. Q. Zhang and C. T. Chang, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B. 63, 081105-1 to 081105-5 (2001). [CrossRef]
  21. Y.W. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, �??Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,�?? Phys. Rev. B 68, 165106 (2003). [CrossRef]
  22. K. Nozaki, T. Baba, �??Quasiperiodic photonic crystal microcavity lasers,�?? Appl. Phys. Lett. 84, 4875-4877 (2004). [CrossRef]
  23. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-234</a> [CrossRef] [PubMed]
  24. M. J. A. de Dood, E. Snoeks, A. Moroz, and A. Polman, �??Design and optimization of 2D photonic crystal waveguides based on silicon,�?? Opt. Quantum Electr. 34, 145-159 (2002). [CrossRef]
  25. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488�??490 (2001). [CrossRef]
  26. S. Guo and S. Albin, �??Numerical techniques for excitation and analysis of defect modes in photonic crystals,�?? Opt. Express 11, 1080-1089 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1080.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-1080.</a> [CrossRef] [PubMed]
  27. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton Univ. Press, 1995).
  28. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999). [CrossRef]
  29. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-binding description of the coupled defect modes in three dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140-2143 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (924 KB)     
» Media 2: GIF (786 KB)     
» Media 3: GIF (776 KB)     
» Media 4: GIF (682 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited