OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 3 — Feb. 7, 2005
  • pp: 847–859

Transmission of THz radiation through InSb gratings of subwavelength apertures

Jaime Gómez Rivas, Christof Janke, Peter Haring Bolivar, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 13, Issue 3, pp. 847-859 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (286 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the extraordinary transmission of terahertz THz radiation through gratings of subwavelength apertures structured in indium antimonide InSb. This transmission can be attributed to the tunneling of surface plasmons polaritons which are excited in semiconductors at THz frequencies. By thermally controlling the permittivity of the grating the transmittance increases by more than one order of magnitude. This increase might be associated to the larger the skin depth in InSb at low temperatures, which gives rise to a larger effective size of the apertures.

© 2005 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Research Papers

Original Manuscript: December 3, 2004
Revised Manuscript: January 5, 2005
Published: February 7, 2005

Jaime Gómez Rivas, Christof Janke, Peter Bolivar, and Heinrich Kurz, "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Express 13, 847-859 (2005)

Sort:  Journal  |  Reset  


  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998). [CrossRef]
  2. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, �??Surface plasmons enhance optical transmission through subwavelength holes,�?? Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. T. Thio, H.F. Ghaemi, H.J. Lezec, P.A. Wolff, and T.W. Ebbesen, �??Surface-plasmon-enhanced transmission through hole arrays in Cr films,�?? J. Opt. Soc. Am B 16, 1743-1748 (1999). [CrossRef]
  4. W.L. Barnes, A. Dereux, and T.W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824 (2003). [CrossRef] [PubMed]
  5. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen, �??Theory of extraordinary optical transmission through subwavelength hole arrays,�?? Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  6. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, �??Enhanced light transmission by hole arrays,�?? J. Opt. A: pure Appl. Opt. 4, S83 (2002). [CrossRef]
  7. W.-C. Liu, D.P. Tsai, �??Optical tunneling effect of surface plasmon polaritons and localized plasmon resonance,�?? Phys. Rev. B 65, 155423 (2002). [CrossRef]
  8. S.A. Darmanyan and A.V. Zayats, �??Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,�?? Phys. Rev. B 67, 035424 (2003). [CrossRef]
  9. M.M.J. Treacy, �??Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,�?? Phys. Rev. B 66, 195105 (2002). [CrossRef]
  10. H.J. Lezec and T. Thio, �??Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,�?? Opt. Express 12, 3629 (2004), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3629</a> [CrossRef] [PubMed]
  11. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, A. Derigon, and T.W. Ebbesen, �??Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,�?? Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  12. J.B. Pendry, L. Martín-Moreno, and F.J. García-Vidal, �??Mimicking surface plasmons with structured surfaces,�?? Science 305, 847 (2004). [CrossRef] [PubMed]
  13. M. Lockyear, A.P. Hibbins, J.R. Sambles, and C.R. Lawrence, �??Surface-topography induced enhanced transmission and directivity of microwave radiation through subwavelength circular metal aperture,�?? Appl. Phys. Lett. 84, 2040 (2004). [CrossRef]
  14. D. Qu, D. Grischkowsky, and W. Zhang, �??Terahertz transmission properties of thin subwavelength metallic hole arrays,�?? Opt. Lett. 29, 896 (2004). [CrossRef] [PubMed]
  15. H. Cao and A. Nahata, �??Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,�?? Opt. Express 12, 1004 (2004)<a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004</a> [CrossRef] [PubMed]
  16. F. Miyamaru and M. Hangyo, �??Finite size effect of transmission property for metal hole arrays in subterahertz region,�?? Appl. Phys. Lett. 84, 2742 (2004). [CrossRef]
  17. S.S. Akarca-Biyikli, I. Bulu, and E. Ozbay, �??Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,�?? Appl. Phys. Lett. 85, 1098 (2004). [CrossRef]
  18. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, �??Enhanced transmission of THz radiation through sub-wavelength holes,�?? Phys. Rev. B 68, 201306 (2003). [CrossRef]
  19. C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. Haring Bolivar, and H. Kurz, �??Optimization of the enhanced THz transmission through arrays of sub-wavelength apertures,�?? Phys. Rev. B 69, 205314 (2004). [CrossRef]
  20. J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, �??Thermal switching of the enhanced transmission of THz radiation through sub-wavelength apertures,�?? Opt. Lett. 29, 1680 (2004). [CrossRef] [PubMed]
  21. The transmission efficiency in Refs. [18, 19, 20] was defined as the transmitted amplitude normalized by the fraction of the surface occupied by the apertures, in contrast to the definition adopted here which refers to the transmitted power.
  22. D.E. Grupp, H.J. Lezec, T.W. Ebbesen, K.M. Pellerin, and T. Thio, �??Crucial role of metal surface in enhanced transmission through subwavelength apertures,�?? Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  23. M. van Exter and D. Grischkowsky, �??Optical and electronic properties of doped silicon from 0.1 to 2 THz,�?? Appl. Phys. Lett. 56, 1694-1696 (1990). [CrossRef]
  24. O. Madelung, �??Physics of III-V compounds,�?? Chapter 4 (John Wiley & Sons, Inc., New York 1964).
  25. S.C. Howells and L.A. Schlie, �??Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,�?? Appl. Phys. Lett. 69, 550 (1996). [CrossRef]
  26. CrysTec GmbH, www.crystec.de
  27. U. Schröter and D. Heitmann, �??Surface-plasmon-enhanced transmission through metallic gratings,�?? Phys. Rev. B 58, 15419 (1998). [CrossRef]
  28. J.A. Porto, F.J. Garc´ýa-Vidal, and J.B. Pendry, �??Transmission resonances on metallic gratings with very narrow slits,�?? Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  29. S. Astilean, Ph. Lalanne, and M. Palamaru, �??Light transmission through metallic channels much smaller than the wavelength,�?? Opt. Comm. 175, 265 (2000). [CrossRef]
  30. H.E. Went, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, and A.P. Crick, �??Selective transmission through very deep zero-order metallic gratings at microwave frequencies,�?? Appl. Phys. Lett. 77, 2789 (2000). [CrossRef]
  31. A.P. Hibbins, J.R. Sambles, C.R. Lawrence, and D.M. Robinson, �??Remarkable transmission of microwave through a wall of long metallic bricks,�?? Appl. Phys. Lett. 79, 2844 (2001). [CrossRef]
  32. Q. Cao and P. Lalanne, �??Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  33. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, �??Horizontal and vertical surface resonances in transmission metallic gratings,�?? J. Opt. A 4, S154 (2002). [CrossRef]
  34. P. Lalanne, C. Sauvan, J.P. Hugonin, J.C. Rodier, and P. Chavel, �??Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,�?? Phys. Rev. B 68, 125404 (2003). [CrossRef]
  35. J.L. Adams, L.C. Botten, and R.C. McPhedran, �??The crossed lamellar transmission grating,�?? J. Optics 9, 91 (1978). [CrossRef]
  36. D.R. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, �??Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,�?? J. Opt. Soc. Am. B 7, 2006 (1990). [CrossRef]
  37. R.W. Wood, �??Anomalous diffraction gratings,�?? Phys. Rev. 48, 928 (1935).
  38. K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, and L. Kuipers, �??Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,�?? Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  39. A. Degiron, H.J. Lezec, W.L. Barnes, and T.W. Ebbesen, �??Effects of hole depth on enhanced light transmission through subwavelength hole arrays,�?? Appl. Phys. Lett. 81, 4327 (2002). [CrossRef]
  40. H. Raether, �??Surface plasmons on smooth and rough surfaces and on gratings,�?? Springer Tracts in Modern Physics, vol. 111 (Springer-Verlag, Berlin 1988).
  41. L. Martín-Moreno and F.J. García-Vidal, �??Optical transmission through circular hole arrays in optically thick metal films,�?? Opt. Express 12, 3619 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619</a> [CrossRef]
  42. J.D. Jackson, �??Classical electrodynamics,�?? thrid edition, Chapter 8 (John Wiley & íSons, Inc., New York 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited