OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 4 — Feb. 21, 2005
  • pp: 1072–1078

Nodal solitons and the nonlinear breaking of discrete symmetry

Albert Ferrando, Mario Zacarés, Pedro Andreés, Pedro Fernández de Córdoba, and Juan A. Monsoriu  »View Author Affiliations


Optics Express, Vol. 13, Issue 4, pp. 1072-1078 (2005)
http://dx.doi.org/10.1364/OPEX.13.001072


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new type of soliton solutions in nonlinear photonic systems with discrete point-symmetry. These solitons have their origin in a novel mechanism of breaking of discrete symmetry by the presence of nonlinearities. These so-called nodal solitons are characterized by nodal lines determined by the discrete symmetry of the system. Our physical realization of such a system is a 2D nonlinear photonic crystal fiber owning 𝓒 symmetry.

© 2005 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Research Papers

History
Original Manuscript: December 1, 2004
Revised Manuscript: December 1, 2004
Published: February 21, 2005

Citation
Albert Ferrando, Mario Zacarés, Pedro Andreés, Pedro Fernández de Córdoba, and Juan Monsoriu, "Nodal solitons and the nonlinear breaking of discrete symmetry," Opt. Express 13, 1072-1078 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1072


Sort:  Journal  |  Reset  

References

  1. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001)
  2. J.W. Fleischer,M. Segev, N. K. Efremedis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003) [CrossRef] [PubMed]
  3. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. G. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004) [CrossRef] [PubMed]
  4. J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, and D. N. Christodoulides, “Observation of vortex-ring “discrete” solitons in 2D photonic lattices,” Phys. Rev. Lett. 92, 123904 (2004) [CrossRef] [PubMed]
  5. A. Ferrando, M. Zacarés, P. F. de Córdoba, D. Binosi, and J. A. Monsoriu, “Vortex solitons in photonic crystal fibers,” Opt. Express 12, 817–822 (2004). [CrossRef] [PubMed]
  6. M. Hamermesh, Group theory and its application to physical problems, Addison-Wesley series in physics, 1st ed. (Addison-Wesley, Reading, Massachusetts, 1964).
  7. A. Ferrando, M. Zacarés, P. F. de Córdoba, D. Binosi, and J. A. Monsoriu, “Spatial soliton formation in photonic crystal fibers,” Opt. Express 11, 452–459 (2003). [CrossRef] [PubMed]
  8. Z. H. Musslimani and J. Yang, “Self-trapping of light in a two-dimensional photonic lattice,” J. Opt. Soc. Am. B 21, 973–981 (2004) [CrossRef]
  9. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Does the nonlinear Schrödinger equation correctly describe beam propagation?,” Opt. Lett. 18, 411–413 (1993). [CrossRef] [PubMed]
  10. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518 (1999) [CrossRef] [PubMed]
  11. T. J. Alexander, A. A. Sukhorukov, and Y. S. Kivshar, “Asymmetric vortex solitons in nonlinear periodic lattices,” Phys. Rev. Lett 93, 063901 (2004) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: GIF (749 KB)     
» Media 2: GIF (576 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited