OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 4 — Feb. 21, 2005
  • pp: 1090–1097

Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals

Sharon M. Weiss, Huimin Ouyang, Jidong Zhang, and Philippe M. Fauchet  »View Author Affiliations


Optics Express, Vol. 13, Issue 4, pp. 1090-1097 (2005)
http://dx.doi.org/10.1364/OPEX.13.001090


View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electrical and thermal modulation of porous silicon microcavities is demonstrated based on a change in the refractive index of liquid crystals infiltrated in the porous silicon matrix. Positive and negative anisotropy liquid crystals are investigated, leading to controllable tuning to both longer and shorter wavelengths. Extinction ratios greater than 10 dB have been demonstrated. Larger attenuation can be achieved by increasing the Q-factor of the microcavities.

© 2005 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Research Papers

History
Original Manuscript: January 18, 2005
Revised Manuscript: January 18, 2005
Published: February 21, 2005

Citation
Sharon Weiss, Huimin Ouyang, Jidong Zhang, and Philippe Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Express 13, 1090-1097 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1090


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: the tunable electromagnetic spectrum,” Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  4. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  5. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82, 2767-2769 (2003). [CrossRef]
  6. B. Maune, M. Lonèar, J. Witzens, M. Hochberg, T. B. Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360-362 (2004). [CrossRef]
  7. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in onedimensional photonic-band-gap system containing liquid crystals,” Appl. Phys. Lett. 82, 3593-3595 (2003). [CrossRef]
  8. G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based nearinfrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95, 767-769 (2004). [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a> [CrossRef] [PubMed]
  10. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  11. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  12. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79, 3627-3629 (2001). [CrossRef]
  13. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic structure,” Nature 399, 764-766 (1999). [CrossRef]
  14. S. M. Weiss, M. Haurylau, and P. M. Fauchet, “Tunable photonic bandgap structures for optical interconnects,” Opt. Mat. 27, 740-744 (2005). [CrossRef]
  15. H. Ouyang, M. Christophersen, R. Viard, and P. M. Fauchet, Center for Future Health, University of Rochester, Rochester, N.Y. 14627, are preparing a manuscript to be called “Macroporous silicon microcavities for macromolecule detection.”
  16. G. Meier, E. Sackmann, and J. G. Grabmaier, Applications of Liquid Crystals, (Springer Verlag, Berlin, Germany, 1975), pp. 29-30.
  17. S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1982 (2003). [CrossRef]
  18. G. P. Crawford and S. Žumer, eds., Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks (Taylor & Francis Ltd., London, 1996), pp. 21-52.
  19. J. Cognard, Alignment of Nematic Liquid Crystals and Their Mixtures (Gordon and Breach, New York, 1982), p. 59.
  20. G. Lérondel, P. Reece, A. Bruyant and M. Gal, “Strong light confinement in microporous photonic silicon structures,” in Engineered Porosity for Microphotonics and Plasmonics, R. Wehrspohn, F. Garcial-Vidal, M. Notomi, and A. Scherer, eds., Mat. Res. Soc. Proc. 797, W1.7.1-W1.7.6 (2004).
  21. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann Publishers, San Francisco, 1998), pp. 423-462.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited