OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 4 — Feb. 21, 2005
  • pp: 1299–1306

Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy

Georgi I. Petrov and Vladislav V. Yakovlev  »View Author Affiliations


Optics Express, Vol. 13, Issue 4, pp. 1299-1306 (2005)
http://dx.doi.org/10.1364/OPEX.13.001299


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an efficient red-shifted continuum generation of picosecond pulses in conventional optical fibers. By using a novel high-repetition rate, high-energy oscillator operating at the fundamental wavelength of 1064 nm, we achieved more than 60% of the output energy in the spectral range from 1150 to 1300 nm, perfectly suitable for broadband coherent anti-Stokes Raman spectroscopy.

© 2005 Optical Society of America

OCIS Codes
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(180.0180) Microscopy : Microscopy
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.5890) Nonlinear optics : Scattering, stimulated
(320.0320) Ultrafast optics : Ultrafast optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: January 27, 2005
Revised Manuscript: December 27, 2004
Published: February 21, 2005

Citation
Vladislav Yakovlev and Georgi I. Petrov, "Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy," Opt. Express 13, 1299-1306 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1299


Sort:  Journal  |  Reset  

References

  1. T. Hirschfeld, “Raman microprobe: vibrational spectroscopy in the femtogram range,” J. Opt. Soc. Am. 63, 476 (1973).
  2. J. R. Lakowicz, Principles of fluorescent spectroscopy (Plenum Press, New York, 1983). [CrossRef]
  3. B. S. Hudson, “New laser techniques for biophysical studies,” Ann. Rev. of Biophys. Bioengin. 6, 135-150 (1977). [CrossRef]
  4. T. Wilson, Confocal microscopy (Academic Press, London, 1990).
  5. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350-352 (1982). [CrossRef] [PubMed]
  6. A. Zumbusch, G. R. Holton, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  7. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. 98, 1577-1582 (2001). [CrossRef] [PubMed]
  8. M. Hashimoto, and T. Araki, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25, 1768-1770 (2000). [CrossRef]
  9. V. V. Yakovlev, “Real-time nonlinear Raman microscopy,” in Biomedical Diagnostic, Guidance, and Surgical-Assist Systems III, T. Vo-Dinh, V. S. Grundfest, D. A. Benaron, eds., Proc. SPIE 4254, 97-105 (2000).
  10. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093-1095 (2002). [CrossRef]
  11. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  12. V. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957-964 (2003). [CrossRef]
  13. V. V. Yakovlev, “Broadband cost-effective nonlinear Raman microscopy,” in Multiphoton Microscopy in Biomedical Sciences IV, A. Periasamy, P. T. C. So, eds., Proc. SPIE 5323, 214-222 (2004)
  14. V. Tuchin, Tissue optics (SPIE Press, Bellingham, WA, USA, 2000).
  15. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113-115 (1999). [CrossRef]
  16. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotech. 17, 763-767 (1999). [CrossRef]
  17. B. N. Toleutaev, T. Tahara, and H. Hamaguchi, “Broad-band (1000 cm-1) multiplex CARS spectroscopy –application to polarization-sensitive and time-resolved measurements,” Appl. Phys. B 59, 369-375 (1994).
  18. V. H. Astinov, and G. M. Georgiev, “Ultrabroadband single-pulse CARS of liquids using a spatially dispersive Stokes beam,” Appl. Phys. B 63, 62-68 (1996).
  19. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Near infrared continuum generation of femtosecond and picosecond pulses in doped optical fibers,” Appl. Phys. B 77, 219-226 (2003). [CrossRef]
  20. G. I. Petrov, V. V. Yakovlev, and N. I. Minkovski, “Broadband nonlinear optical conversion of a highenergy diode-pumped picosecond laser,” Opt. Commun. 229, 441-445 (2004). [CrossRef]
  21. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B 45, 191-195 (1988).
  22. A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, “High-power diode-pumped picosecond Nd3+:YVO4 laser,” Opt. Lett. 22, 1645-1647 (1997). [CrossRef]
  23. R. R. Alfano, Ed. The supercontinuum laser source (Springer-Verlag, New York, 1989).
  24. E. M. Dianov, “Advances in Raman fibers,” J. Lightwave Technol. 20, 1457-1462 (2002). [CrossRef]
  25. D. I. Chang, S. V. Chernikov, M. J. Guy, J. R. Taylor, and H. J. Kong, “Efficient cascaded Raman generation and signal amplification at 1.3 µm in GeO2-doped single-mode fibre,” Opt. Commun. 142, 289-293 (1997). [CrossRef]
  26. H. S. Seo, and K. Oh, “Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core,” Opt. Commun. 181, 145-151 (2000). [CrossRef]
  27. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, “Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  28. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505-1507 (2002). [CrossRef]
  29. G. I. Petrov, S. Saltiel, R. D. Heathcote, and V. V. Yakovlev, “Nonlinear microscopy of cellular structures,” Las. Phys. Lett. 1, 10-15 (2004). [CrossRef]
  30. G. I. Petrov, V. Shcheslavskiy, L. Sona, and V. V. Yakovlev, “CARS-microscopy analysis of collagen transformation,” in Multiphoton Microscopy in Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds., Proc. SPIE 5700 (2005) In press.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited