OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 4 — Feb. 21, 2005
  • pp: 1322–1327

Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy

Hideaki Kano and Hiro-o Hamaguchi  »View Author Affiliations


Optics Express, Vol. 13, Issue 4, pp. 1322-1327 (2005)
http://dx.doi.org/10.1364/OPEX.13.001322


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Supercontinuum-based multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy has been applied to vibrational imaging of a living fission yeast cell. We have successfully extracted only a vibrationally resonant CARS image from a characteristic spectral profile in the C-H stretching vibrational region. Using our simple but sensitive analysis, the vibrational contrast is significantly improved in comparison with a CARS imaging at a fixed Raman shift. The CARS image of a living yeast cell indicates several areas at which the signal is remarkably strong. They are considered to arise from mitochondria.

© 2005 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Research Papers

History
Original Manuscript: February 8, 2005
Revised Manuscript: February 15, 2005
Published: February 21, 2005

Citation
Hideaki Kano and Hiro-o Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13, 1322-1327 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-4-1322


Sort:  Journal  |  Reset  

References

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  2. M. Hashimoto, T. Araki, and S. Kawata, "Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration," Opt. Lett. 25, 1768-1770 (2000). [CrossRef]
  3. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  4. M. Müller and J. M. Schins, "Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy," J. Phys. Chem. B 106, 3715-3723 (2002). [CrossRef]
  5. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  6. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92, 220801-220804 (2004). [CrossRef] [PubMed]
  7. J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  8. H. Kano and H. Hamaguchi, "Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber," Appl. Phys. B B80, 243-246 (2005). [CrossRef]
  9. J.-X. Cheng, L. D. Book, and X. S. Xie, "Polarization coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 26, 1341-1343 (2001). [CrossRef]
  10. A. Volkmer, L. D. Book, and X. S. Xie, "Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay," Appl. Phys. Lett. 80, 1505-1507 (2002). [CrossRef]
  11. G. W. H. Wurpel, J. M. Schins, and M. Müller, "Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 27, 1093-1095 (2002). [CrossRef]
  12. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarization-sensitive "microscopic" multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001). [CrossRef]
  13. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106, 8493-8498 (2002). [CrossRef]
  14. C. L. Evans, E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility chi(3) for vibrational microscopy," Opt. Lett. 29, 2923-2925 (2004). [CrossRef]
  15. T. W. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701-2703 (2004). [CrossRef] [PubMed]
  16. H. Kano and H. Hamaguchi, "Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. (accepted). [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  18. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov "Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber," Opt. Exp. 12, 1932-1937 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932. [CrossRef]
  19. M. L. Hu, C. Y. Wang, Y. Li, Z. Wang, L. Chai, and A. M. Zheltikov "Multiplex frequency conversion of unamplified 30-fs Ti: sapphire laser pulses by an array of waveguiding wires in a random-hole microstructure fiber," Opt. Exp. 12, 6129-6134 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-25-6129. [CrossRef]
  20. H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003). [CrossRef] [PubMed]
  21. H. Kano and H. Hamaguchi, "Femtosecond coherent anti-Stokes Raman scattering spectroscopy using a supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 85, 4298-4300 (2004). [CrossRef]
  22. T. Nagahara, K. Imura, and H. Okamoto, "Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber," Rev. Sci. Instrum. 75, 4528-4533 (2004). [CrossRef]
  23. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  24. A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 023901-023904 (2001). [CrossRef]
  25. G. W. H. Wurpel, J. M. Schins, and M. Müller, "Direct measurement of chain order in single phospholipids mono- and bilayers with multiplex CARS," J. Phys. Chem. B 108, 3400-3403 (2004). [CrossRef]
  26. Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, "Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy," J. Raman Spectrosc. 34, 1-3 (2003). [CrossRef]
  27. Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, "Raman spectroscopic signature of life in a living yeast cell," J. Raman Spectrosc. 35, 525-526 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited