OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1361–1367

Negative refraction in Photonic Crystals: thickness dependence and Pendellösung phenomenon

Vito Mocella  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1361-1367 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that the refracted wave at the exit surface of a Photonic Crystal (PhC) slab is periodically modulated, in positive or in negative direction, changing the slab thickness. In spite of an always increasing literature, the effect of the thickness in negative refraction on PhC’s does not seem to be appropriately considered. However such an effect is not surprising if interpreted with the help of Dynamical Diffraction Theory (DDT), which is generally applied in the x-ray diffraction. The thickness dependence is a direct result of the so-called Pendellösung phenomenon. That explains the periodic exchange, inside the crystal, of the energy among direct beam (or positively refracted) and diffracted beam (or negatively refracted). The Pendellösung phenomenon is an outstanding example of the application of the DDT as a powerful and simple tool for the analysis of s electromagnetic interaction in PhC’s.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(260.2110) Physical optics : Electromagnetic optics
(290.4210) Scattering : Multiple scattering

ToC Category:
Research Papers

Original Manuscript: December 20, 2004
Revised Manuscript: February 15, 2005
Published: March 7, 2005

Vito Mocella, "Negative refraction in Photonic Crystals: thickness dependence and Pendellösung phenomenon.," Opt. Express 13, 1361-1367 (2005)

Sort:  Journal  |  Reset  


  1. J. B. Pendry and D. R. Smith. "Reversing light with negative refraction,�?? Physics Today 57, 37-43 (2004). [CrossRef]
  2. D. R. Smith, J. B. Pendry, M.C.K. Wiltshire, �??Metamaterials and Negative refractive index,�?? Science 305, 788-792 (2004). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith and S. Schultz. "Experimental verification of a negative index of refraction," Science 292 , 77-79 (2001) [CrossRef] [PubMed]
  4. S. Foteinopoulou, E. N. Economou and C. M. Soukoulis. "Refraction in media with a negative refractive index,", Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  5. P. M. Valanju, R. M. Walser and A. P. Valanju. "Wave refraction in negative-index media: Always positive and very inhomogeneous,�?? Phys. Rev. Lett. 88, 187401 (2002). [CrossRef] [PubMed]
  6. D. R. Smith and N. Kroll �??Negative Refractive Index in Left-Handed Material,�?? Phys. Rev. Lett. 85, 2933-2966 (2000). [CrossRef] [PubMed]
  7. V. G. Veselago �?? The electrodynamics of substances with simultaneously negative value of ε and µ,�?? Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  8. J. B. Pendry. "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  9. P. V. Parimi , W.T. Lu et al. �??Imaging by flat lens using negative refraction,�?? Nature 426, 404 (2003). [CrossRef] [PubMed]
  10. P. Kolinko and D. R. Smith. "Numerical study of electromagnetic waves interacting with negative index materials," Opt Express 11, 640-648 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-640">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-640</a> [CrossRef] [PubMed]
  11. A. K. Iyer, P. C. Kremer and G. V. Eleftheriades. "Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial," Opt. Express 11, 696-708 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-696. </a> [CrossRef] [PubMed]
  12. P. F. Loschialpo, D. L. Smith, et al. "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E 67, 025602 (2003). [CrossRef]
  13. D. Maystre and S. Enoch. "Perfect lenses made with left-handed materials: Alice's mirror?," J. Opt. Soc. Am. A 21, 122-131 (2004). [CrossRef]
  14. A. Martinez, H. Miguez, et al. "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004). [CrossRef]
  15. C. G. Parazzoli, R. B. Greegor, et al. "Performance of a negative index of refraction lens," Appl. Phys. Lett. 84, 3232-3234 (2004). [CrossRef]
  16. A. L. Pokrovsky and A. L. Efros. "Lens based on the use of left-handed materials," Appl. Opt. 42, 5701-5705 (2003). [CrossRef] [PubMed]
  17. B. Gralak, S. Enoch and G. Tayeb. "Anomalous refractive properties of photonic crystals," J. Opt. Soc. of Am. A 17, 1012-1020 (2000). [CrossRef]
  18. M. Notomi. "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  19. C. Y. Luo, S. G. Johnson and J. D. Joannopoulos. "All-angle negative refraction in a three-imensionally periodic photonic crystal," Appl. Phys. Lett. 81, 2352-2354 (2002). [CrossRef]
  20. C. Luo, S. G. Johnson, et al. "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104, (2002). [CrossRef]
  21. E. Cubukcu, K. Aydin, et al. "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  22. E. Cubukcu, K. Aydin, et al. "Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  23. S. Foteinopoulou and C. M. Soukoulis. "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003). [CrossRef]
  24. R. Moussa, S. Foteinopoulou and C. M. Soukoulis. "Delay-time investigation of electromagnetic waves through homogeneous medium and photonic crystal left-handed materials," Appl. Phys. Lett. 85, 1125-1127 (2004). [CrossRef]
  25. P. V. Parimi, W. T. Lu, et al. "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]
  26. Z. Y. Li and L. L. Lin. "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction, Phys. Rev. B 68, 245110 (2003). [CrossRef]
  27. A. Berrier, M. Mulot, et al. "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal,�??Phys. Rev. Lett. 93, 73902 (2004). [CrossRef]
  28. B. W. Battermann, H. Cole, �??Dynamical diffraction theory of X rays by perfect crystals,�?? Rev. Mod. Phys. 36, 681-717 (1964). [CrossRef]
  29. A. Authier, Dynamical Theory of X-ray Diffraction, Oxford University Press (Oxford, 2001).
  30. P.P. Ewald, �??Zur Theorie der Interferenzen der Röntgenstrahlen,�?? Physik Z. 14, 465-472 (1913).
  31. P.P. Ewald, �??Crystal optics for visible light and X rays,�?? Rev. Mod. Physics 37, 46-56 (1965). [CrossRef]
  32. J.D. Joannopulos, R.D. Mead, J.N. Winn, Photonic crystal: Molding the flow of light, Princeton University Press (Princeton, 1995).
  33. K. Sakoda, Optical Properties of Photonic Crystals, Springer Verlag (New York, 2001).
  34. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  35. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  36. O. Francescangeli, S. Melone, R. De Leo, "Dynamical diffraction of microwaves by periodic dielectric media,�?? Phys. Rev. A 40, 4988-4996 (1989). [CrossRef] [PubMed]
  37. Z. Zhang, S. Satpathy, �??Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,�?? Phys. Rev. Lett. 65, 2650-2653 (1990). [CrossRef] [PubMed]
  38. P. St. J. Russel, Designing photonic crystals in Electron and Photon Confinement in Semiconductor Nanostructures , IOP Press (Amsterdam, 2003), p. 79-103.
  39. C. Poulton, S. Guenneau, A.B. Movchan, �?? Noncommuting limits and effective properties for oblique propagation of electromagnetic waves through an array of aligned fiber,�?? Phy. Rev. B 69, 195112 (2004). [CrossRef]
  40. C. �??H. Kuo and Z. Ye, �??Negative-refraction behavior revealed by arrays of dielectric cylinders�??, Phys. Rev. E 70, 026608 (2004). [CrossRef]
  41. P.P. Ewald, �??Crystal optics for visible light and X rays,�?? Rev. Mod. Physics 37, 46-56 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited