OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1486–1497

Photonic crystal structures in titanium dioxide (TiO2) and their optimal design

X. Wang, M. Fujimaki, and K. Awazu  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1486-1497 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1641 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose photonic crystal (PhC) structures in titanium dioxide (TiO2) material which is suitable for micro-nano structure optical device engineering and is a good candidate for visible light application. To provide a guideline for designing TiO2 based PhC, the comprehensive optical band gap maps of both the two-dimensional and three-dimensional structures are computed using the planewave expansion method. For 2D structures, besides the ideal infinite high 2D PhC and conventional air-bridge type slab, we also propose a “sandwich-type” PhC for better robustness and easier fabrication. The optimal thicknesses of both types of PhC slabs are investigated. In 3D PhC, we calculate the Yablonovite structure and its reverse which are made possible recently in our fabrication. For the first time to our knowledge, the computation results indicate that the reversed Yablonovite structure also shows a complete band gap characteristic, although it is smaller compared to that of the normal Yablonovite. The dependence of band gap width on the filling ratio and drilling angles for both types of Yablonovite structures are investigated.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.4830) Optical design and fabrication : Systems design
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Research Papers

Original Manuscript: December 16, 2004
Revised Manuscript: February 9, 2005
Published: March 7, 2005

X. Wang, M. Fujimaki, and K. Awazu, "Photonic crystal structures in titanium dioxide (TiO2) and their optimal design," Opt. Express 13, 1486-1497 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).
  4. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  5. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, �??Omnidirectional reflection from a one-dimensional photonic crystal,�?? Opt. Lett. 23, 1573-1575 (1998). [CrossRef]
  6. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, �??Semiconductor three-dimensional and two-dimensional photonic crystals and devices,�?? IEEE J. Quantum Electron. 38, 726�??735 (2002). [CrossRef]
  7. O. Painter, RK Lee, A. Yariv, A. Scherer, JD O'Brien, PD Dapkus, I. Kim, �??Two-dimensional photonic crystal defect laser,�?? Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  8. K. Nomura, T. Nakanishi, Y. Nagasawa, Y. Ohki, K. Awazu, M. Fujimaki, N. Kobayashi, S. Ishii and K. Shima, �??Structural change induced in TiO2 by swift heavy ions and its application to three dimensional lithography,�?? Phys. Rev. B 68, 64106 (2003). [CrossRef]
  9. K. Awazu, M. Fujimaki, X. Wang, A. Sai, Y. Ohki, �??Fabrication of two-dimensional photonic structure of titanium dioxide with sub-micrometer resolution by deep x-ray lithography,�?? Mat. Res. Soc. Symp. Proc. 820, R4.5 (2004). [CrossRef]
  10. S. Yamasaki, N. Hata, T. Yoshida, H. Oheda, A. Matsuda, H. Okushi, and K. Tanaka, �??Annealing studies on low optical absorption of GD a-Si:H using photo-acoustic spectroscopy,�?? J. Phys. (Paris), Colloq. 42, C4-297 (1981). [CrossRef]
  11. J. E. G. J. Wijnhoven and W. L. Vos, �??Preparation of Photonic Crystals Made of Air Spheres in Titania,�?? Science 281, 802-804 (1998). [CrossRef]
  12. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, �??Optical photonic crystals fabricated from colloidal systems,�?? Appl. Phys. Lett. 74, 3933-3935 (1999). [CrossRef]
  13. C. Cuisin, A. Chelnokov, J.-M. Lourtioz, D. Decanini and Y. Chen, �??Fabrication of three-dimensional photonic structures with submicrometer resolution by x-ray lithography,�?? J. Vac. Sci. Technol. B 18, 3505-3509 (2000). [CrossRef]
  14. S. Shimada, K. Miyazawa and M. Kuwabara, �??An easy method for fabricating TiO2 gel photonic crystals using molds and highly concentrated alkoxide solutions,�?? Jpn. J. Appl. Phys. 41, L291�??L293 (2002). [CrossRef]
  15. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  16. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express. 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a.> [CrossRef] [PubMed]
  17. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751�??5758 (1999). [CrossRef]
  18. E. Chow, S. Y. Lin, S. G. Johnson, P. B. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983�??986 (2000). [CrossRef] [PubMed]
  19. E. Yablonovitch and T. J. Gmitter, �??Photonic band structure: the face-centered-cubic case employing nonspherical atoms,�?? Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited