OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1515–1530

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment

Matthew Borselli, Thomas J. Johnson, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 13, Issue 5, pp. 1515-1530 (2005)
http://dx.doi.org/10.1364/OPEX.13.001515


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a combination of resist reflow to form a highly circular etch mask pattern and a low-damage plasma dry etch, high-quality-factor silicon optical microdisk resonators are fabricated out of silicon-oninsulator (SOI) wafers. Quality factors as high as Q=5×106 are measured in these microresonators, corresponding to a propagation loss coefficient as small as α~0.1 dB/cm. The different optical loss mechanisms are identified through a study of the total optical loss, mode coupling, and thermally-induced optical bistability as a function of microdisk radius (5-30 µm). These measurements indicate that optical loss in these high-Q microresonators is limited not by surface roughness, but rather by surface state absorption and bulk free-carrier absorption.

© 2005 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4870) Nonlinear optics : Photothermal effects
(230.5750) Optical devices : Resonators

ToC Category:
Research Papers

History
Original Manuscript: February 2, 2005
Revised Manuscript: February 21, 2005
Published: March 7, 2005

Citation
Matthew Borselli, Thomas Johnson, and Oskar Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1515


Sort:  Journal  |  Reset  

References

  1. L. Pavesi and D. Lockwood, Silicon Photonics (Springer-verlag, New York, 2004).
  2. G. Reed and A. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004). [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,�?? Nature 427, 615�??618 (2004). [CrossRef] [PubMed]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, �??All-optical control of light on a silicon chip,�?? Nature 431, 1081�??1084 (2004). [CrossRef] [PubMed]
  5. O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12, 5269�??5273 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269.</a> [CrossRef] [PubMed]
  6. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, �??A continuous-wave Raman silicon laser,�?? Nature 433, 725�??728 (2005). [CrossRef] [PubMed]
  7. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).
  8. B. E. Little, �??A VLSI Photonics Platform,�?? in Optical Fiber Communication Conference (2003).
  9. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, �??Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,�?? Appl. Phys. Lett. 85, 3693�??3695 (2004). [CrossRef]
  10. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, �??High-Q measurements of fused-silica microspheres in the near infrared,�?? Opt. Lett. 23, 247�??249 (1998). [CrossRef]
  11. M. Cai, O. Painter, and K. Vahala, �??Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,�?? Phys. Rev. Lett. 85, 74�??77 (2000). [CrossRef] [PubMed]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, �??Ultra-high-Q toroid microcavity on a chip,�?? Nature 421, 925�??928 (2003). [CrossRef] [PubMed]
  13. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, �??Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces,�?? Phys. Rev. Lett. 57, 249�??252 (1986). [CrossRef] [PubMed]
  14. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, �??Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,�?? Phys. Rev. B 70, 081306(R) (2004). [CrossRef]
  15. M. Haverlag, D. Vender, and G. S. Oehrlein, �??Ellipsometric study of silicon surface damage in electron cyclotron resonance plasma etching using CF4 and SF6,�?? Appl. Phys. Lett. 61, 2875�??2877 (1992). [CrossRef]
  16. P. E. Barclay, K. Srinivasan, and O. Painter, �??Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper,�?? Opt. Express 13, 801�??820 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801.</a> [CrossRef] [PubMed]
  17. S. Spillane (2004). Private communication.
  18. D. Weiss, V. Sandoghdar, J. Hare, V. Lefévre-Seguin, J. Raimond, and S. Haroche, �??Splitting of high-Q Mie modes induced light backscattering in silica microspheres,�?? Opt. Lett. 22, 1835�??1837 (1995). [CrossRef]
  19. B. E. Little, J.-P. Laine, and S. T. Chu, �??Surface-Roughness-Induced Contradirectional Coupling in Ring and Disk Resonators,�?? Opt. Lett. 22, 4�??6 (1997). [CrossRef] [PubMed]
  20. M. Gorodetsky, A. Pryamikov, and V. Ilchenko, �??Rayleigh scattering in high-Q microspheres,�?? J. Opt. Soc. Am. B 17, 1051�??1057 (2000). [CrossRef]
  21. T. J. Kippenburg, S. M. Spillane, and K. J. Vahala, �??Modal coupling in traveling-wave resonators,�?? Opt. Lett. 27, 1669�??1671 (2002). [CrossRef]
  22. B. E. Little and S. T. Chu, �??Estimating surface-roughness loss and output coupling in microdisk resonators,�?? Opt. Lett. 21, 1390�??1392 (1996). [CrossRef] [PubMed]
  23. A. Yariv, Optical Electronics, 4th ed. (Saunder College Publishing, a division of Holt, Rinehart and Winston, Inc., Orlando, Florida, 1991).
  24. M. Kuznetsov and H. A. Haus, �??Radiation Loss in Dielectric Waveguide Structures by the Volume Current Method,�?? IEEE J. Quan. Elec. 19, 1505�??1514 (1983). [CrossRef]
  25. R. A. Soref and B. R. Bennett, �??Electrooptical effects in silicon,�?? IEEE J. Quan. Elec. 23, 123�??129 (1987). [CrossRef]
  26. V. R. Almeida and M. Lipson, �??Optical bistability on a silicon chip,�?? Opt. Lett. 29, 2387�??2389 (2004). [CrossRef] [PubMed]
  27. H. Rokhsari, S. M. Spillane, and K. J. Vahala, �??Loss characterization in microcavities using the thermal bistability effect,�?? Appl. Phys. Lett. 85, 3029�??3031 (2004). [CrossRef]
  28. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, �??Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,�?? Phys. Rev. Lett. 91, 043,902 (2003). [CrossRef]
  29. J. D. Joannopoulos, R. D. Meade, and J. N.Winn, Photonic Crystals (Princeton University Press, Princeton, New Jersey, 1995).
  30. H. A. Haus, Waves and Fields in Optoelectronics, 1st ed. (Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited