OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1555–1560

Optically-controllable, micron-sized motor based on live cells

M. Gudipati, J. S. D’Souza, J. A. Dharmadhikari, A. K. Dharmadhikari, B. J. Rao, and D. Mathur  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1555-1560 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate rotation of live Chlamydomonas reinhardtii cells in an optical trap; the speed and direction of rotation are amenable to control by varying the optical trapping force. Cells rotate with a frequency of 60–100 rpm; functional flagella are shown to play a decisive role in rotation. The rotating cells generate torque (typically ~7500–12000 pN nm) that is much larger than that generated chemically by a dynein head in vitro (40 pN nm). The total force associated with a rotating live cell (~10 pN) suggests that activity of only a small fraction (~5%) of dynein molecules per beat cycle is sufficient to generate flagellar motion.

© 2005 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.1420) Medical optics and biotechnology : Biology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Research Papers

Original Manuscript: December 3, 2004
Revised Manuscript: February 21, 2005
Published: March 7, 2005

M. Gudipati, J. D'Souza, J. Dharmadhikari, A. Dharmadhikari, B. Rao, and D. Mathur, "Optically-controllable, micron-sized motor based on live cells," Opt. Express 13, 1555-1560 (2005)

Sort:  Journal  |  Reset  


  1. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, & R. Sawada, �??Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,�?? J. Appl. Phys. 82, 2773-2779 (1997). [CrossRef]
  2. P. Galajda & P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249-251 (2001). [CrossRef]
  3. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, & K. Dholakia, �??Controlled rotation of optically-trapped microscopic particles.�?? Science 292, 912-914 (2001) [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, R. N. Heckenberg, & H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles.�?? Nature 394, 348-350 (1998). [CrossRef]
  5. H. Liu, J.J. Schmidt, G.D. Bachand, S.S. Rizk, L.L. Looger, H.W. Hellinga, & C.D. Montemagno, �??Control of a biomolecular motor-powered nanodevice with an engineered chemical switch,�?? Nature Materials 1, 173�??177 (2002). [CrossRef]
  6. J. E. Curtis & D. G. Grier, �??Modulated optical vortices.�?? Opt. Lett. 28, 872-874 (2003). [CrossRef] [PubMed]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, & S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  8. E.H. Harris, �??The Chlamydomonas Sourcebook,�?? Academic Press, Amsterdam (1989).
  9. J. Cosson, �??A moving image of flagella: News and views on the mechanisms involved in axonemal beating,�?? Cell Biology International 20, 83-94 (1996). [CrossRef] [PubMed]
  10. J.A. Dharmadhikari & D. Mathur, �??Using an optical trap to fold and align single red blood cells,�?? Current Sci. 86, 1432-1437 (2004).
  11. J.A. Dharmadhikari, S. Roy, A.K. Dharmadhikari, S. Sharma, & D. Mathur, �??Torque-generating malaria-infected red blood cells in an optical trap,�?? Opt. Express 12, 1179-1184 (2004). [CrossRef] [PubMed]
  12. S. Oza, in �??Rheology Vol. 3,�?? Ed. F.R. Eirich, Academic Press, New York, 1960.
  13. B. Bean & A. Harris, �??Selective inhibition of flagellar activity in Chlamydomonas by nickel,�?? J. Protozool 26, 235-240 (1979). [PubMed]
  14. K.A. Schmitz, D.L. Holcomb-Wygle, D.J. Oberski, & C.B. Lindemann, �??Measurement of the force produced by an intact bull sperm flagellum in isometric arrest and estimation of the dynein stall force,�?? Biophys. J., 79, 468-478 (2000). [CrossRef] [PubMed]
  15. R. Mallik, B.C. Carter, S.A. Lex, S.J. King, & S.P. Gross, �??Cytoplasmic dynein functions as a gear in response to load,�?? Nature 427, 649-652 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MPG (1602 KB)     
» Media 2: MPG (1910 KB)     
» Media 3: MPG (1188 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited