OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1604–1614

Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection

Robert J. Moerland, Niek F. van Hulst, Henkjan Gersen, and Laurens Kuipers  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1604-1614 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has to be negative, a demand that metals fulfill at optical frequencies. We propose a new measurement scheme to verify the performance of such a negative permittivity near-perfect lens at optical frequencies. The scheme is based on near-field scanning optical microscopy and single molecule detection. Prerequisite near-field single molecule data, necessary to assess the performance of the lens, is presented. A numerical evaluation, which includes absorption, of the expected performance of a slab of a realistic negative permittivity material confirms the merits of the scheme.

© 2005 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Research Papers

Original Manuscript: December 22, 2004
Revised Manuscript: February 23, 2005
Published: March 7, 2005

Robert Moerland, Niek van Hulst, Henkjan Gersen, and Laurens Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection," Opt. Express 13, 1604-1614 (2005)

Sort:  Journal  |  Reset  


  1. 1. J. B. Pendry, �??Negative refraction makes a perfect lens,�?? Phys. Rev. Lett. 85, 3966�??3969 (2000). [CrossRef] [PubMed]
  2. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of epsilon and µ,�?? Sov. Phys. Usp. 10, 509�??514 (1968). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative index of refraction,�?? Science 292, 77�??79 (2001). [CrossRef] [PubMed]
  4. X. S. Rao and C. K. Ong, �??Subwavelength imaging by a left-handed material superlens,�?? Phys. Rev. E 68, 067601 (2003). [CrossRef]
  5. X. S. Rao and C. K. Ong, �??Amplification of evanescent waves in a lossy left-handed material slab,�?? Phys. Rev. B 68, 113103 (2003). [CrossRef]
  6. N. C. Panoiu and R. M. Osgood, �??Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies,�?? Opt. Commun. 223, 331�??337 (2003). [CrossRef]
  7. P. G. Kik, S. A. Maier, and H. A. Atwater, �??Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,�?? Phys. Rev. B 69, 045418 (2004). [CrossRef]
  8. D. O. S. Melville, R. J. Blaikie, and C. R.Wolf, �??Submicron imaging with a planar silver lens,�?? Appl. Phys. Lett. 84, 4403�??4405 (2004). [CrossRef]
  9. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, �??Regenerating evanescent waves from a silver superlens,�?? Opt. Express 11, 682�??687 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-682. [CrossRef] [PubMed]
  10. J. A. Veerman, A.M. Otter, L. Kuipers, and N. F. van Hulst, �??High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,�?? Appl. Phys. Lett. 72, 3115�??3117 (1998). [CrossRef]
  11. M. L.M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, �??Photon scanning tunneling optical microscopy with a three-dimensional multiheight imaging mode,�?? Appl. Phys. Lett. 77, 4092�??4094 (2000). [CrossRef]
  12. J. A. Veerman, M. F. Garcia-Parajo, L. Kuipers, and N. F. V. Hulst, �??Single molecule mapping of the optical field distribution of probes for near-field microscopy,�?? J. Microscopy-Oxford 194, 477�??482 (1999). [CrossRef]
  13. N. F. van Hulst, J. A. Veerman, M. F. Garcia-Parajo, and L. Kuipers, �??Analysis of individual (macro)molecules and proteins using near-field optics,�?? J. Chem. Phys. 112, 7799�??7810 (2000). [CrossRef]
  14. B. Sick, B. Hecht, U. P. Wild, and L. Novotny, �??Probing confined fields with single molecules and vice versa,�?? J. Microscopy-Oxford 202, 365�??373 (2001). [CrossRef]
  15. H. Bethe, �??Theory of Diffraction by Small Holes,�?? Phys. Rev. 66, 163 (1944). [CrossRef]
  16. C. J. Bouwkamp, �??On Bethe�??s theory of diffraction by small holes,�?? Philips Res. Rep. 5, 321�??332 (1950).
  17. O. J. F. Martin and M. Paulus, �??Influence of metal roughness on the near-field generated by an aperture/apertureless probe,�?? J. Microscopy-Oxford 205, 147�??152 (2002). [CrossRef]
  18. Computer Simulation Technology, URL http://www.cst.com.
  19. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill Book Company, 1972).
  20. S. A. Ramakrishna and J. B. Pendry, �??The asymmetric lossy near-perfect lens,�?? J. Modern Opt. 49, 1747�??1762 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited