OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1651–1659

Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control

William M. J. Green, Reginald K. Lee, Guy A. DeRose, Axel Scherer, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1651-1659 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An InGaAsP-InP optical switch geometry based on electrical control of waveguide-resonator coupling is demonstrated. Thermooptic tuning of a Mach-Zehnder interferometer integrated with a racetrack resonator is shown to result in switching with ON-OFF contrast up to 18.5 dB. The optical characteristics of this unique design enable a substantial reduction of the switching power, to a value of 26 mW in comparison with 40 mW for a conventional Mach-Zehnder interferometer switch. Modulation response measurements reveal a 3 dB bandwidth of 400 kHz and a rise time of 1.8 µs, comparing favorably with current state-of-the-art thermooptic switches.

© 2005 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Research Papers

Original Manuscript: January 21, 2005
Revised Manuscript: February 23, 2005
Published: March 7, 2005

William Green, Reginald Lee, Guy DeRose, Axel Scherer, and Amnon Yariv, "Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control," Opt. Express 13, 1651-1659 (2005)

Sort:  Journal  |  Reset  


  1. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, �??Compact microring notch filters,�?? IEEE Photon. Technol. Lett. 12, 398�??400 (2000). [CrossRef]
  2. B. E. Little, S. T. Chu, and H. A. Haus, �??Track changing by use of the phase response of microspheres and resonators,�?? Opt. Lett. 23, 894�??896 (1998). [CrossRef]
  3. J. E. Heebner and R. W. Boyd, �??Enhanced all-optical switching by use of a nonlinear fiber ring resonator,�?? Opt. Lett. 24, 847�??849 (1999). [CrossRef]
  4. R. W. Boyd and J. E. Heebner, �??Sensitive disk resonator photonic biosensor,�?? Appl. Opt. 40, 5742�??5747 (2001). [CrossRef]
  5. S. Blair and Y. Chen, �??Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,�?? Appl. Opt. 40, 570�??582 (2001). [CrossRef]
  6. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, �??A fast low-power optical memory based on coupled micro-ring lasers,�?? Nature 432, 206�??209 (2004). [CrossRef] [PubMed]
  7. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, �??All-optical switching in a laterally coupled microring resonator by carrier injection,�?? IEEE Photon. Technol. Lett. 15, 36�??38 (2003). [CrossRef]
  8. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, �??Ultralow-threshold microcavity Raman laser on a microelectronic chip,�?? Opt. Lett. 29, 1224�??1226 (2004). [CrossRef] [PubMed]
  9. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, �??Very high-order microring resonator filters for WDM applications,�?? IEEE Photon. Technol. Lett. 16, 2263�??2265 (2004). [CrossRef]
  10. A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photon. Technol. Lett. 14, 483�??485 (2002). [CrossRef]
  11. A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321�??322 (2000). [CrossRef]
  12. A. Yariv, in Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).
  13. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, �??Fast and low-power thermooptic switch on thin silicon-on-insulator,�?? IEEE Photon. Technol. Lett. 15, 1366�??1368 (2003). [CrossRef]
  14. C. H. Lee, P. S. Mak, and A. P. DeFonzo, �??Optical control of millimeter-wave propagation in dielectric waveguides,�?? IEEE J. Quantum Electron. 16, 277�??288 (1980). [CrossRef]
  15. L. B. Soldano and E. C. M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615�??627 (1995). [CrossRef]
  16. W. M. J. Green, J. Scheuer, G. A. DeRose, A. Yariv, and A. Scherer, �??Assessment of lithographic process variation effects in InGaAsP annular Bragg resonator lasers,�?? J. Vac. Sci. Technol. B 22, 3206�??3209 (2004). [CrossRef]
  17. L. A. Coldren and S.W. Corzine, in Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience Publications, New York, 1995).
  18. J. M. Choi, R. K. Lee, and A. Yariv, �??Ring fiber resonators based on fused-fiber grating add-drop filters: application to resonator coupling,�?? Opt. Lett. 27, 1598�??1600 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited