OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 5 — Mar. 7, 2005
  • pp: 1672–1678

Nonlinear dynamics inside femtosecond enhancement cavities

K.D. Moll, R. Jason Jones, and Jun Ye  »View Author Affiliations

Optics Express, Vol. 13, Issue 5, pp. 1672-1678 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the effect of intracavity nonlinear dynamics arising from enhanced peak powers of femtosecond pulses inside broad-bandwidth, dispersion-controlled, high-finesse optical cavities. We find that for χ(3) nonlinearities, when a train of femtosecond pulses are maximally coupled into a cavity by active stabilization of its frequency comb to the corresponding linear resonances of a cavity, enhancement ceases when the peak nonlinear phase shift is sufficient to shift the cavity resonance frequencies by more than a cavity linewidth. In addition, we study and account for the complex spectral dynamics that result from chirping the input pulse and show excellent qualitative agreement with experimental results.

© 2005 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.5750) Optical devices : Resonators
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

Original Manuscript: February 7, 2005
Revised Manuscript: February 24, 2005
Published: March 7, 2005

K. Moll, R. Jones, and Jun Ye, "Nonlinear dynamics inside femtosecond enhancement cavities," Opt. Express 13, 1672-1678 (2005)

Sort:  Journal  |  Reset  


  1. V. Petrov, D. Georgiev, and U. Stamm, �??Improved Mode-Locking of a Femtosecond Titanium-Doped Sapphire Laser by Intracavity Second-Harmonic Generation,�?? Appl. Phys. Lett. 60, 1550�??1552 (1992). [CrossRef]
  2. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, �??Resonant optical second harmonic generation and mixing,�?? IEEE J. Quantum Electron. QE-2, 109�??123 (1966). [CrossRef]
  3. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, �??2nd-Harmonic Generation of a Continuous-Wave Diode-Pumped Nd-Yag Laser Using an Externally Resonant Cavity,�?? Opt. Lett. 12, 1014�??1016 (1987). [CrossRef] [PubMed]
  4. C. S. Adams and A. I. Ferguson, �??Frequency Doubling of a Single Frequency Ti-Al2o3 Laser Using an External Enhancement Cavity,�?? Opt. Commun. 79, 219�??223 (1990). [CrossRef]
  5. Z. Y. Ou and H. J. Kimble, �??Enhanced Conversion Efficiency for Harmonic-Generation with Double-Resonance,�?? Opt. Lett. 18, 1053�??1055 (1993). [CrossRef] [PubMed]
  6. K. Fiedler, S. Schiller, R. Paschotta, P. Kurz, and J. Mlynek, �??Highly Efficient Frequency-Doubling with a Doubly Resonant Monolithic Total-Internal-Reflection Ring-Resonator,�?? Opt. Lett. 18, 1786�??1788 (1993). [CrossRef] [PubMed]
  7. T. Heupel, M. Weitz, and T. W. Hansch, �??Phase-coherent light pulses for atom optics and interferometry,�?? Opt. Lett. 22, 1719�??1721 (1997). [CrossRef]
  8. A. Kastler, �??Atomes a l�??Interieur d�??un Interferometre Perot-Fabry,�?? Appl. Opt. 1, 17�??24 (1962). [CrossRef]
  9. J. Ye, L. S. Ma, and J. L. Hall, �??Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,�?? J. Opt. Soc. Am. B 15, 6�??15 (1998). [CrossRef]
  10. J. Ye and T. W. Lynn, �??Applications of optical cavities in modern atomic, molecular, and optical physics,�?? Advances in Atomic, Molecular, and Optical Physics 49, 1�??83 (2003). [CrossRef]
  11. R. J. Jones and J. Ye, �??Femtosecond pulse amplification by coherent addition in a passive optical cavity,�?? Opt. Lett. 27, 1848�??1850 (2002). [CrossRef]
  12. J. C. Petersen and A. N. Luiten, �??Short pulses in optical resonators,�?? Opt. Express 11, 2975�??2981 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2975</a>. [CrossRef] [PubMed]
  13. R. J. Jones and J. C. Diels, �??Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,�?? Phys. Rev. Lett. 86, 3288�??3291 (2001). [CrossRef] [PubMed]
  14. R. J. Jones, I. Thomann, and J. Ye, �??Precision stabilization of femtosecond lasers to high-finesse optical cavities,�?? Phys. Rev. A 69, 051803 (R) (2004). [CrossRef]
  15. J. Ye and S. T. Cundiff (editors), Femtosecond optical frequency comb technology: Principle, operation and application (Springer, New York, 2005). [CrossRef]
  16. A. N. Luiten and J. C. Petersen, �??Ultrafast resonant polarization interferometry: Towards the first direct detection of vacuum polarization,�?? Phys. Rev. A 70, 033801 (2004). [CrossRef]
  17. R. J. Jones and J. Ye, �??High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity,�?? Opt. Lett. 29, 2812�??2814 (2004). [CrossRef] [PubMed]
  18. F. Ouellette and M. Piche, �??Ultrashort Pulse Reshaping with a Nonlinear Fabry-Perot Cavity Matched to a Train of Short Pulses,�?? J. Opt. Soc. Am. B 5, 1228�??1236 (1988). [CrossRef]
  19. M. J. Thorpe, R. J. Jones, K. D. Moll, and J. Ye, �??Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs,�?? Opt. Express 13, 882�??888 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-882">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-882</a.> [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2002).
  21. P. Dube, L. S. Ma, J. Ye, P. Jungner, and J. L. Hall, �??Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,�?? J. Opt. Soc. Am. B 13, 2041�??2054 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited