OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 6 — Mar. 21, 2005
  • pp: 1833–1838

Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals

Quanshui Li, Chunling Liu, Zhengang Liu, and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 13, Issue 6, pp. 1833-1838 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



GaAs nanocrystals have been prepared by a mechanical ball milling technique. The optical limiting properties of colloidal ethanol suspensions of these crystals were investigated by use of a nanosecond optical parametric oscillator pumped by a Nd:YAG system. Not only at a wavelength of 1064 nm but also in the 490–670 nm visible region, colloidal GaAs nanocrystals with a concentration of 0.023 mg/mL exhibit strong optical limiting performance, which is better than that of C60 in toluene with the same linear transmittance at a wavelength of 532 nm. Two-photon absorption is regarded as the dominant mechanism for this technique, and the two-photon absorption coefficients of GaAs nanocrystals are estimated to be 5.6 and 21.1–37.0 cm/GW in the near-infrared and visible regions, respectively.

© 2005 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Research Papers

Original Manuscript: January 25, 2005
Revised Manuscript: February 18, 2005
Published: March 21, 2005

Quanshui Li, Chunling Liu, Zhengang Liu, and Qihuang Gong, "Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals," Opt. Express 13, 1833-1838 (2005)

Sort:  Journal  |  Reset  


  1. L. W. Tutt and T. F. Boggess, �??A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,�?? Prog. Quantum Electron. 17, 299-338 (1993). [CrossRef]
  2. Y. P. Sun and J. E. Riggs, �??Organic optical limiting materials. From fullerenes to nanoparticles,�?? Int. Rev. Phys. Chem. 18, 43-90 (1999). [CrossRef]
  3. I. C. Khoo, A. Diaz, and J. W. Ding, �??Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,�?? J. Opt. Soc. Am. B 21, 1234-1240 (2004). [CrossRef]
  4. G. S. He, J. D. Bhawalkar, C. F. Zhao, and P. N. Prasad, �??Optical limiting effect in a two-photon absorption dye doped solid matrix,�?? Appl. Phys. Lett. 67, 2433-2435 (1995). [CrossRef]
  5. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, �??Two-photon absorption and broadband optical limiting with bis-donor stilbenes,�?? Opt. Lett. 22, 1843-1845(1997). [CrossRef]
  6. C. W. Spangler, �??Recent development in the design of organic materials for optical power limiting,�?? J. Mater. Chem. 9, 2013-2020 (1999). [CrossRef]
  7. Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud, �??Two-photon absorption and optical power limiting of bifluorene molecule,�?? J. Chem. Phys. 114, 5391-5396 (2001). [CrossRef]
  8. L. W. Tutt and A. Kost, �??Optical limiting performance of C60 and C70 solutions,�?? Nature 356, 225-266 (1992). [CrossRef]
  9. J. W. Perry, K. Mansour, I.-Y. S. Lee, X.-Y. Wu, P. V. Bedworth, C.-T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, �??Organic optical limiter with a strong nonlinear absorption response,�?? Science 273, 1533-1536 (1996). [CrossRef]
  10. J. D. Bhawalkar, G. S. He, and N. Y. Prasad, �??Nonlinear multiphoton processes in organic and polymeric materials,�?? Rep. Prog. Phys. 59, 1041-1070 (1996). [CrossRef]
  11. M. Albota, D. Beljonne, J .L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, �??Design of of organic molecules with large two-photon absorption cross sections,�?? Science 281, 1653-1656 (1998). [CrossRef] [PubMed]
  12. B. J. Zhang and S.-J. Jeon, �??Two-photon properties of bis-1,4-(p-diarylaminostyryl)-2,5-dicyanobenzene derivatives: two-photon cross-section tendency in multi-branched structures,�?? Chem. Phys. Lett. 377, 210-216 (2003). [CrossRef]
  13. T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, �??Optical limiting in GaAs,�?? IEEE J. Quantum Electron. 21, 488-494 (1985). [CrossRef]
  14. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, �??Optical limiting with semiconductors,�?? J. Opt. Soc. Am. B 5, 1980-1988 (1988). [CrossRef]
  15. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, �??Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,�?? J. Opt. Soc. Am. B 9, 405-414 (1992). [CrossRef]
  16. B. A. Smith, D. M. Waters, A. E. Faulhaber, M. A. Kreger, T. W. Roberti, and J. Z. Zhang, �??Preparation and ultrafast optical characterization of metal and semiconductor colloidal nano-particles,�?? J. Sol-Gel Sci. Technol. 9, 125-137 (1997). [CrossRef]
  17. J. F. Xu, R. Czerw, S. Webster, D. L. Carroll, J. Ballato, and R. Nesper, �??Nonlinear optical transmission in VOx nanotubes and VOx nanotube composites,�?? Appl. Phys. Lett. 81, 1711-1713 (2002). [CrossRef]
  18. S. Creekmore, J. T. Seo, Q. Yang, Q. Wang, J. Anderson, C. Pompey, D. Temple, X. Peng, J. L. Qu, W. Yu, A. Wang, A. Mott, M. Namkung, S. S. Jung, and J. H. Kim, �??Nonlinear optical properties of cadmium telluride semiconductor nanocrystals for optical power-limiting application,�?? J. Korean Phys. Soc. 42, S143-S148 (2003).
  19. Z. G. Liu, C. L. Liu, Q. S. Li, Z. J. Chen, and Q. H. Gong, �??Synthesis, characterization and nonlinear optical properties of colloidal gallium arsenide nanocrystals,�?? submitted to Nanotechnology.
  20. C. Li, C. L. Liu, F. S. Li, and Q. H. Gong, �??Optical limiting performance of two soluble multi-walled carbon nanotubes,�?? Chem. Phys. Lett. 380, 201-205 (2003). [CrossRef]
  21. L. Banyai, M. Lindberg, and S. W. Koch, �??Two-photon absorption and third-order nonlinearities in GaAs quantum dots,�?? Opt. Lett. 13, 212-214 (1988). [CrossRef] [PubMed]
  22. M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, �??Organometallic synthesis of GaAs crystallites exhibiting quantum confinement,�?? J. Am. Chem. Soc. 112, 9438-9439 (1990). [CrossRef]
  23. L. Butler, G. Redmond, and D. Fitzmaurice, �??Preparation and spectroscopic characterization of highly confined nanocrystallites of gallium arsenide in decane,�?? J. Phys. Chem. 97, 10, 750-10,755 (1993). [CrossRef]
  24. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, �??Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,�?? Phys. Rev. B 35, 8113-8125 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited