OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 6 — Mar. 21, 2005
  • pp: 2040–2046

Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials

Carlos Jacinto, Samuel L. Oliveira, Tomaz Catunda, Acácio A. Andrade, John D. Myers, and Michael J. Myers  »View Author Affiliations

Optics Express, Vol. 13, Issue 6, pp. 2040-2046 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermal lens technique was carried out to experimentally determine the influence of the energy transfer upconversion (ETU) processes on fluorescence quantum efficiency (η) in Nd3+-doped materials. The samples with high Nd3+concentration present a considerable reduction in η with the increasing excitation power due to the efficient ETU processes. Besides, the energy migration was identified as the mechanism responsible for the upconversion losses. In addition, it was verified that the critical inversion density is not concentration independent, as previously stated, but it decreases with the Nd concentration. Our results point out the approach based on TL technique as a valuable alternative because of its sensitivity allowing the measurements to be performed in a pump power regime that avoids damages in the investigated material.

© 2005 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3380) Materials : Laser materials
(160.4760) Materials : Optical properties
(190.7220) Nonlinear optics : Upconversion

ToC Category:
Research Papers

Original Manuscript: January 20, 2005
Revised Manuscript: March 4, 2005
Published: March 21, 2005

Carlos Jacinto, Samuel Oliveira, Tomaz Catundab, Acácio Andrade, John Myers, and Michael Myers, "Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials," Opt. Express 13, 2040-2046 (2005)

Sort:  Journal  |  Reset  


  1. S. A. Payne, G. D. Wilke, L. K. Smith, W. F. Krupke, �??Auger upconversion losses in Nd-doped laser glasses,�?? Opt. Commun. 111, 263-268 (1994). [CrossRef]
  2. J. L. Doualan, C. Maunier, D. Descamps, J. Landais, and R. Moncorgé, �??Excited-state absorption and upconversion losses in the Nd-doped glasses for high-power lasers,�?? Phys. Rev. B 62, 4459-4463 (2000); (and references therein). [CrossRef]
  3. V. Pilla, T. Catunda, H. P. Jenssen, A. Cassanho, �??Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method,�?? Opt. Lett. 28, 239-241 (2003). [CrossRef] [PubMed]
  4. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, �??Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,�?? Phys. Rev. B 58, 16076-16092 (1998). [CrossRef]
  5. S. A. Payne, L. K. Smith, R. J. Beach, B. H. T. Chai, J. H. Tassano, L. D. DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, �??Properties of Cr:LiSrAlF6 crystals for laser operation,�?? Appl. Opt. 33, 5526-5536 (1994.) [CrossRef] [PubMed]
  6. S. Guy, C. L. Bonner, D. P. Shepherd, D.C. Hanna, A. C. Tropper, and B. Ferrand, �??High-inversion densities in Nd:YAG: Upconversion and Bleaching,�?? IEEE J. Quantum Electron. 34, 900-909 (1998). [CrossRef]
  7. Y. Guyot, H. Manaa, J. Y. Rivoire, R. Moncorgé, N. Garnier, E. Descroix, M. Bon, and P. Laporte, �??Excited-state-absorption and upconversion studies of Nd3+-doped single crystals Y3Al5O12, YLiF4, and LaMgAl11O19,�?? Phys. Rev. B 51, 784-798 (1995). [CrossRef]
  8. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, �??Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLF laser crystals,�?? IEEE J. Quantum Electron. 35, 647-655 (1999). [CrossRef]
  9. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, �??Heat generation in Nd:YVO4 with and without laser action,�?? IEEE Phot. Technol. Lett. 10, 1727-179 (1998). [CrossRef]
  10. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, �??Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,�?? Phys. Rev. B 61, 3337-3346 (2000). [CrossRef]
  11. D. C. Brown, �??Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,�?? IEEE J. Quantum Electron. 34, 560-572 (1998). [CrossRef]
  12. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, M. L. Baesso, �??Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass,�?? Appl. Phys. Lett. 78(21), 3220-3222 (2001). [CrossRef]
  13. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, C. M. Miranda, and M. L. Baesso, �??Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,�?? J. Non-Cryst. Solids 273, 215-227 (2000). [CrossRef]
  14. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, , E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, �??Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,�?? Phys. Rev. B. 57, 10545-10549 (1998). [CrossRef]
  15. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, J. D. Myers, M. J. Myers, and T. Catunda, �??Normalized lifetimes thermal lens method for determination of luminescence quantum efficiency and thermo-optical coefficients: Application to Nd3+-doped glasses,�?? (submitted).
  16. M. L. Baesso, J. Shen, and R. D. Snook, �??Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths,�?? J. Appl. Phys. 75(8), 3732-3737 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited