OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2370–2376

Fabrication of three-dimensional photonic crystals with multilayer photolithography

Peng Yao, Garrett J. Schneider, Dennis W. Prather, Eric D. Wetzel, and Daniel J. O’Brien  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2370-2376 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a new approach for the fabrication of three-dimensional (3D) photonic crystals based on multilayer 3D photolithography. This method, which uses commercially available photoresist, allows batch fabrication of 3D photonic crystals (PhCs), possesses the flexibility to create a variety of different lattice arrangements, and provides the freedom for arbitrary defect introduction. We describe in this paper how planar lithography is modified to achieve 3D confined exposure and multiple resist application. We demonstrated the fabrication of multilayer “woodpile” structures with and without engineered defects. We further infiltrated the resist template using a higher-index material and obtained the inverse 3D PhC structure.

© 2005 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(220.3740) Optical design and fabrication : Lithography
(230.3990) Optical devices : Micro-optical devices
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: February 11, 2005
Revised Manuscript: March 15, 2005
Published: April 4, 2005

Peng Yao, Garrett Schneider, Dennis Prather, Erik Wetzel, and Daniel O'Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithography," Opt. Express 13, 2370-2376 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch and T. J. Gmitter, "Photonic Band-Structure - the Face-Centered-Cubic Case," J. Opt. Soc. Am. A 7, 1792-1800 (1990). [CrossRef]
  2. E. Yablonovitch, T. J. Gmitter, and R. Bhat, "Inhibited and Enhanced Spontaneous Emission from Optically Thin Algaas Gaas Double Heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988). [CrossRef] [PubMed]
  3. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58 2486-2489 (1987). [CrossRef] [PubMed]
  4. J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE J. Sel. Top. Quantum Electron. 8 1246-1257 (2002). [CrossRef]
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74 1212-1214 (1999). [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits," J. Lightwave Technol. 17 2032-2034 (1999). [CrossRef]
  7. C. Cuisin, A. Chelnokov, J.-M. Lourtioz, D. Decanini, and Y. Chen, "Submicrometer Resolution Yablonovite Templates Fabricated By X-ray Lithography," Appl. Phys. Lett. 77 770-772 (2000). [CrossRef]
  8. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of Photonic Crystals for The Visible Spectrum By Holographic Lithography," Nature 404 53-56 (2000). [CrossRef] [PubMed]
  9. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398 51-54 (1999). [CrossRef]
  10. P. Yao, G. J. Schneider, B. Miao, J. Murakowski, D. W. Prather, E. D. Wetzel, and D. J. O'Brien, "Multilayer three-dimensional photolithography with traditional planar method," Appl. Phys. Lett. 85 3920-3922 (2004). [CrossRef]
  11. R. K. Yonkoski and D. S. Soane, "Model for spin coating in microelectronic applications," J. Appl. Phys. 72 725-740 (1992). [CrossRef]
  12. O. D. Velev and E. W. Kaler, "Structured porous materials via colloidal crystal templating: From inorganic oxides to metals," Adv. Mat. 12 531-534 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited