OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2377–2384

Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2377-2384 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the possibility of using radio-frequency modulation spectroscopic techniques for interrogation of fiber Bragg-grating (FBG) structures. Sidebands at 2 GHz are superimposed onto the output spectrum of a 1560-nm DFB diode laser. The power reflected by an FBG is demodulated at multiples of the sideband frequency. The sideband-to-carrier beat signal is shown to be extremely sensitive to Bragg wavelength shifts due to mechanical stress. Using this method, both static and dynamic strain measurements can be performed, with a noise-equivalent sensitivity of the order of 150 nε/√Hz, in the quasi-static domain (2 Hz), and 1.6 nε/√Hz at higher frequencies (1 kHz). The measured frequency response is presently limited at 20 kHz only by the test device bandwidth. A long-term reproducibility in strain measurements within 100 nε is estimated from laser frequency drift referred to molecular absorption lines.

© 2005 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2630) Fiber optics and optical communications : Frequency modulation
(230.1950) Optical devices : Diffraction gratings
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Research Papers

Original Manuscript: February 22, 2005
Revised Manuscript: March 16, 2005
Published: April 4, 2005

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13, 2377-2384 (2005)

Sort:  Journal  |  Reset  


  1. Y. J. Rao and S. Huang, �??Applications of Fiber Optic Sensors,�?? in Fiber Optic Sensors, F.T.S. Yu and S. Yin eds. (Marcel Dekker, Inc., New York, Basel, 2002). [CrossRef]
  2. A. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, and E.J. Friebele, �??Fiber Grating Sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  3. B.A. Chouet, �??Long-period volcano seismicity: its sources and use in eruption forecasting,�?? Nature 380, 309-316 (1996). [CrossRef]
  4. M. Nakano, H. Kumagai, N. Kumazoua, K. Yamaoaka, B.A. Chouet, �??The excitation and characterization frequencies of the long period volcanic event: an approach based on an autoregressive model of a linear dynamic system,�?? J. Geophys. Res. 103, 10031-10046 (1998). [CrossRef]
  5. P. Ferraro, G. de Natale, �??On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring,�?? Opt. Laser Eng. 37, 115-130 (2002). [CrossRef]
  6. Y.J. Rao, �??In-fibre Bragg grating sensors,�?? Meas. Sci. Technol. 8, 355-375 (1997). [CrossRef]
  7. A. Arie, B. Lissak, and M. Tur, �??Static Fiber-Bragg Grating Strain Sensing Using Frequency-Locked Lasers,�?? J. Lightwave Technol. 17, 1849-1855 (1999). [CrossRef]
  8. L.A. Ferreira, E.V. Diatzikis, J.L. Santos, and F. Farahi, �??Demodulation of fiber Bragg grating sensors based on dynamic tuning of a multimode laser diode,�?? Appl. Opt. 38, 4751-4759 (1999). [CrossRef]
  9. B. Lissak, A. Arie, and M. Tur, �??Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,�?? Opt. Lett. 23, 1930-1932 (1998). [CrossRef]
  10. S. Knudsen, A.B. Tveten, and A. Dandridge, �??Measurements of Fundamental Thermal Induced Phase Fluctuations in the Fiber of a Sagnac Interferometer,�?? IEEE Photonics Technol. Lett. 7, 90-92 (1995). [CrossRef]
  11. J.A. Silver, �??Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,�?? Appl. Opt. 31, 707-717 (1992) and references therein. [CrossRef] [PubMed]
  12. G. di Lonardo, L. Fusina, E. Venuti, J.W. C. Johns, M.I. El Idrissi, J. Liévin, M. Herman, �??The Vibrational Energy Pattern in Acetylene. V. 13C2H2,�?? J. Chem Phys. 111, 1008-1016 (1999). [CrossRef]
  13. G.R. Janik, C.B. Carlisle, and T.F. Gallagher, �??Two-tone frequency-modulation spectroscopy,�?? J. Opt. Soc. Am. B 3, 1070-1074 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited