OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2596–2604

Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs

Ziyang Zhang and Min Qiu  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2596-2604 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact in-plane channel drop filter design in 2D hexagonal lattice photonic crystal slabs is presented in this paper. The system consists of two photonic crystal waveguides and a single cavity with two degenerate modes. Both modes are able to confine light strongly in the vertical dimension and prove to couple equally into the waveguides. Three dimensional finite difference time domain simulations show that the quality factor is around 3,000. At resonance, power transferred to the drop waveguide is 78% and only 1.6% remains in the bus waveguide. We also show that by carefully tuning the drop waveguide boundary, light remaining in the bus can be further reduced to below 0.4% and thus the channel isolation is larger than 22dB.

© 2005 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: February 11, 2005
Revised Manuscript: March 21, 2005
Published: April 4, 2005

Ziyang Zhang and Min Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059 (1987) [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987) [CrossRef] [PubMed]
  3. H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,�?? J. Appl. Phys. 75, 4753 (1994)
  4. A. Mekis, S. Fan, and J. D. Joannopoulos, �??Bound states in photonic crystal waveguides and waveguide bends,�?? Phys. Rev. B 58, 4809 (1998) [CrossRef]
  5. T. F. Krauss, R. M. De La Rue, and S. Brand, �??Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,�?? Nature 383, 699 (1996) [CrossRef]
  6. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B, 60, 5751 (1999) [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, �??High-Q photonic nanocavity in a two-dimensional photonic crystal,�?? Nature 425, 944 (2003) [CrossRef] [PubMed]
  8. H. Y. Ryu, M. Notomi, and Y. H. Lee, �??High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,�?? Appl. Phys. Lett. 83, 4294 (2003) [CrossRef]
  9. Z. Zhang and M. Qiu, �??Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,�?? Opt. Express 12, 3988 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3988">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3988</a> [CrossRef] [PubMed]
  10. K. Srinivasan and O. Painter, �??Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,�?? Opt. Express 11, 579 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-579</a> [CrossRef] [PubMed]
  11. M. Tokushima and H. Yamada, �??Light propagation in a photonic-crystal-slab line-defect waveguide,�?? IEEE J. of Quantum Electron. 38, 753 (2002) [CrossRef]
  12. A. Sugitatsu, T. Asano and S. Noda, �??Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs,�?? Appl. Phys. Lett. 84, 5395 (2004) [CrossRef]
  13. M. Qiu and B. Jaskorzynska, �??A design of a channel drop filter in a two-dimensional triangular photonic crystal,�?? Appl. Phys. Lett. 83, 1074 (2003) [CrossRef]
  14. M. Qiu, �??Ultra-compact optical filter in two-dimensional photonic crystal,�?? Electron. Lett. 40, 539 (2004) [CrossRef]
  15. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608 (2000) [CrossRef] [PubMed]
  16. B. S. Song, S. Noda and T. Asano, �??Photonic Devices Based on In-Plane Hetero Photonic Crystals,�?? Science 300, 1537 (2003) [CrossRef] [PubMed]
  17. A. Chutinan, M. Mochizuki, M. Imada and S. Noda, �??Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 79, 2690 (2001) [CrossRef]
  18. B. K. Min, J. E. Kim and H. Y. Park, �??High-efficiency Surface-emitting channel drop filters in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 86, 11106 (2005) [CrossRef]
  19. B. K. Min, J. E. Kim and H. Y. Park, �??Channel drop filters using resonant tunnelling processes in two-dimensional triangular lattice photonic crystal slabs,�?? Optics Commun. 237, 59 (2004) [CrossRef]
  20. K. H. Hwang and G. H. Song, �??Design of a Two-Dimensional Photonic-Crystal Channel-Drop Filter Based on the Triangular-Lattice Holes on the Slab Structure,�?? Proceedings of 30th European Conference on Optical Communication, 5, 76 (Stockholm, Sweden, 2004)
  21. S. Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, �??Channel Drop Tunneling through Localized States,�?? Phys. Rev. Lett. 80, 960 (1998) [CrossRef]
  22. C. Manolatou, M. J. Khan, S. Fan, Pierre R. Villeneuve, H. A. Haus and J. D. Joannopoulos, �??Coupling of Modes Analysis of Resonant Channel Add-Drop Filters,�?? IEEE J. of Quantum Electron. 35, 1322 (1999) [CrossRef]
  23. Y. Xu, Y. Li, E. K. Lee and A. Yariv, �??Scattering-theory analysis of waveguide-resonator coupling,�?? Phys. Rev. E. 62, 7389 (2000) [CrossRef]
  24. J. Vuèkoviæ, M. lonèar, H. Mabuchi and A. Scherer, �??Optimization of the Q factor in photonic crystal microcavities,�?? IEEE J. of Quantum Electron. 38, 850 (2002) [CrossRef]
  25. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,�?? IEEE Trans. Antennas and Propagation, 14, 302 (1966) [CrossRef]
  26. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185 (1994) [CrossRef]
  27. M. Qiu and Z. Zhang, �??High Q Microcavities in 2D Photonic Crystal Slabs Studied by FDTD Techniques and Padé Approximation,�?? Proc. SPIE. 5733, (2005, to be published) [CrossRef]
  28. W. H. Guo, W. J. Li, and Y. Z. Huang, �??Computation of Resonant Frequencies and Quality Factors of Cavities by FDTD Technique and Padé Approximation,�?? IEEE Microwave Wireless Components Lett. 11, 223 (2001) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1293 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited