OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2653–2667

Reflection of focused beams from opal photonic crystals

Karri Varis, Marco Mattila, Sanna Arpiainen, Jouni Ahopelto, Fredrik Jonsson, Clivia M Sotomayor Torres, Marc Egen, and Rudolf Zentel  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2653-2667 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a robust method for computing the reflection of arbitrarily shaped and sized beams from finite thickness photonic crystals. The method is based on dividing the incident beam into plane waves, each of which can be solved individually using Bloch periodic boundary conditions. This procedure allows us to take a full advantage of the crystal symmetry and also leads to a linear scaling of the computation time with respect to the number of plane waves needed to expand the incident beam. The algorithm for computing the reflection of an individual plane wave is also reviewed. Finally, we find an excellent agreement between the computational results and measurement data obtained from opals that are synthesized using polystyrene and poly(methyl methacrylate) microspheres.

© 2005 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(160.5470) Materials : Polymers

ToC Category:
Research Papers

Original Manuscript: February 17, 2005
Revised Manuscript: March 23, 2005
Published: April 4, 2005

Karri Varis, Marco Mattila, Sanna Arpiainen, Jouni Ahopelto, Fredrik Jonsson, Clivia Sotomayor Torres, Marc Egen, and Rudolf Zentel, "Reflection of focused beams from opal photonic crystals," Opt. Express 13, 2653-2667 (2005)

Sort:  Journal  |  Reset  


  1. K. Sakoda, Optical properties of photonic crystals (Springer-Verlag, Berlin, 2001).
  2. S. W. Leonard, H. M. van Driel, A. Birner, U. Gsele, and P. R. Villeneuve, �??Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides,�?? Opt. Lett. 25, 1550�??1552 (2000). [CrossRef]
  3. M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, �??Investigation of Fabry-Perot cavities based on 2D Photonic crystals fabricated in InP membranes,�?? J. Appl. Phys. 95, 5928�??5930 (2004). [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, �??A three-dimensional photonic crystal operating at infrared wavelengths,�?? Nature 394, 251�??253 (1998). [CrossRef]
  5. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths,�?? Science 289, 604�??605 (2000). [CrossRef] [PubMed]
  6. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, �??Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,�?? Phys. Rev. Lett. 67(17), 2295�??2299 (1991). [CrossRef]
  7. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi, �??Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation,�?? Appl. Phys. Lett. 81(17), 3122�??3124 (2002). [CrossRef]
  8. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, �??Single-Crystal Colloidal Multilayers of Controlled Thickness,�?? Chem. Mater. 11, 2131�??2140 (1999). [CrossRef]
  9. F. Bresson, C.-C. Chen, G.-C. Chi, and Y.-W. Chen, �??Simplified sedimentation process for 3D photonic thick layers/bulk crystals with a stop-band in the visible range,�?? Appl. Surf. Sci. 217, 281�??288 (2003). [CrossRef]
  10. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, �??Optical Photonic Crystals Synthesized from Colloidal Systems of Polystyrene Spheres and Nanocrystalline Titania,�?? J. Lightwave Technol. 17, 1970�??1974 (1999). [CrossRef]
  11. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, �??Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals,�?? Phys. Rev. E 61, 5784�??5793 (2000). [CrossRef]
  12. M. Bardosova and R. H. Tredgold, �??Ordered layers of monodispersive colloids,�?? J. Mater. Chem. 12, 2835�??2842 (2002). [CrossRef]
  13. D. J. Norris and Y. A. Vlasov, �??Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals,�?? Adv. Mater. 13, 371�??376 (2001). [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a plane wave basis,�?? Opt. Express 8, 173�??190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.</a> [CrossRef] [PubMed]
  15. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of photonic gaps in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152�??3155 (1990). [CrossRef] [PubMed]
  16. P. R. Villeneuve and M. Pich, �??Photonic bandgaps in periodic dielectric structures,�?? Prog. Quantum Electron. 18, 153�??200 (1994). [CrossRef]
  17. S. Guo, F. Wu, and S. Albin, �??Photonic band gap analysis using finite-difference frequency-domain method,�?? Opt. Express 12, 1741�??1746 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1741.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1741.</a> [CrossRef] [PubMed]
  18. J. B. Pendry and A. MacKinnon, �??Calculation of Photon Dispersion Relations,�?? Phys. Rev. Lett. 69, 2772�??2775 (1992). [CrossRef] [PubMed]
  19. J. M. Elson and P. Tran, �??Dispersion in photonic media and diffraction from gratings: a different modal expansion for the R-matrix propagation technique,�?? J. Opt. Soc. Am. A 12, 1765�??1771 (1995). [CrossRef]
  20. N. Stefanou, V. Karathanos, and A. Modinos, �??Scattering of electromagnetic waves by periodic structures,�?? J. Phys.: Condens. Matter 4, 7389�??7400 (1992). [CrossRef]
  21. L.-M. Li and Z.-Q. Zhang, �??Multiple-scattering approach to finite-sized photonic band-gap materials,�?? Phys. Rev. B 58, 9587�??9590 (1998). [CrossRef]
  22. G. Tayeb and D. Maystre, �??Rigorous theoretical study of finite-size two-dimensional photonic crystals doped my microcavities,�?? J. Opt. Soc. Am. A 14, 3323�??3332 (1997). [CrossRef]
  23. M. Mulot, S. Anand, M. Swillo, M. Qui, B. Jaskorzynska, and A. Talneau, �??Low-loss InP-based photonic-crystal waveguides etched with Ar/Cl2 chemically assisted ion beam ething,�?? J. Vac. Sci. Technol. B 21, 900�??903 (2003). [CrossRef]
  24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, USA, 1995).
  25. A. Bjarklev, W. Bogaerts, T. Felici, D. Gallagher, M. Midrio, A. Lavrinenko, D. Mogitlevtsev, T. Søndergaard, D. Taillaert, and B. Tromborg, �??Comparison of strengths/weaknesses of existing numerical tools and outlining of modelling strategy,�?? A public report on Picco project (2001), <a href="http://www.intec.rug.ac.be/picco/reports.asp">http://www.intec.rug.ac.be/picco/reports.asp</a>
  26. K. Varis and A. R. Baghai-Wadji, �??A Novel 3D Pseudo-Spectral Analysis of Photonic Crystal Slabs,�?? ACES J. 19, 101�??111 (2004).
  27. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434�??8437 (1993). [CrossRef]
  28. X. Zhang, �??Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens,�?? Phys. Rev. B 70, 195, 110 (2004). [CrossRef]
  29. A. R. Baghai-Wadji, �??A Symbolic Procedure for the Diagonalization of Linear PDEs in Accelerated Computational Engineering,�?? in Lecture Notes in Computer Science, vol 2630, F.Winkler and U. Langer, eds., pp. 347�??360 (Springer-Verlag, Heidelberg, Germany, 2003). [CrossRef]
  30. M. T. Manzuri-Shalmani and A. R. Baghai-Wadji, �??Elemental field distributions in corrugated structures with large-amplitude gratings,�?? Electron. Lett. 39, 1690�??1691 (2003). [CrossRef]
  31. D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, �??Opaline Photonic Crystals: How Does Self-Assembly Work?�?? Adv. Mater. 16, 1393�??1399 (2004). [CrossRef]
  32. Z.-Z. Gu, A. Fujishima, and O. Sato, �??Fabrication of High-Quality Opal Films with Controllable Thickness,�?? Chem. Mater. 14, 760�??765 (2002). [CrossRef]
  33. M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, and C. M. Sotomayor Torres, �??Heterostructures of Polymer Photonic Crystal Films,�?? Chem. Mater. 15, 3786�??3792 (2003). [CrossRef]
  34. M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, �??Dye-Containing Polymer Beads as Photonic Crystals,�?? Chem. Mater. 12, 2508�??2512 (2000). [CrossRef]
  35. F. Jonsson, C. M. Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, �??Artificially inscribed defects in opal photonic crystals,�?? Microelectr. Eng. (to appear 2005).
  36. O. Madelung, Data in Science and Technology: Semiconductors-Group IV Elements and III-V Compounds (Springer-Verlag, New York, 1991).
  37. W. G. Spitzer and J. M. Whelan, �??Infrared absorption and electron effective mass in n-type gallium arsenide,�?? Phys. Rev. 114, 59�??63 (1959). [CrossRef]
  38. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, �??Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,�?? Phys. Med. Biol. 48, 4165�??4172 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited