OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2668–2677

Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy

A. Curry, G. Nusz, A. Chilkoti, and A. Wax  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2668-2677 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use optical darkfield micro-spectroscopy to characterize the plasmon resonance of individual silver nanoparticles in the presence of a substrate. The optical system permits multiple individual nanoparticles to be identified visually for simultaneous spectroscopic study. For silver particles bound to a silanated glass substrate, we observe changes in the plasmon resonance due to induced variations in the local refractive index. The shifts in the plasmon resonance are investigated using a simple analytical theory in which the contributions from the substrate and environment are weighted with distance from the nanoparticle. The theory is compared with experimental results to determine a weighting factor which facilitates modeling of environmental refractive index changes using standard Mie code. Use of the optical system for characterizing nanoparticles attached to substrates for biosensing applications is discussed.

© 2005 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Research Papers

Original Manuscript: February 25, 2005
Revised Manuscript: March 23, 2005
Manuscript Accepted: March 23, 2005
Published: April 4, 2005

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy," Opt. Express 13, 2668-2677 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Nath, A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem. 74, 504–509 (2002). [CrossRef] [PubMed]
  2. S. Link, M. El-Sayed, “Optical properties and ultrafast dynamics of metallic nanocrystals,” Ann. Rev. Phys. Chem. 54, 331–366 (2003). [CrossRef]
  3. A. Haes, D. Stuart, S. Nie, R. Van Duyne, “Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms,” Journ. Fluor. 14, 355–367 (2004). [CrossRef]
  4. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Letters 3, 935–938 (2003). [CrossRef]
  5. http://www.philiplaven.com
  6. P. Johnson, R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  7. H. Xu, M. Käll, “Modeling the optical response of nanoparticle-based surface plasmon resonance sensors,” Sensors and Actuators B 87, 244–249 (2002). [CrossRef]
  8. P. Bobbert, J. Vlieger, “Light scattering by a sphere on a substrate” Physica 137A, 209–242 (1986).
  9. J. Kim, S. Ehrman, G. Mulholland, T. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Applied Optics 41, 5405–5412 (2002). [CrossRef] [PubMed]
  10. C. Oubre, P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–17747 (2004). [CrossRef]
  11. T. Jensen, M. Duval, K. Kelly, A. Lazarides, G. Schatz, R. Van Duyne, “Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103, 9846–9853 (1999). [CrossRef]
  12. K. Kelly, E. Coronado, L. Zhao, G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  13. H. Tamaru, H. Kuwata, H. Miyazaki, K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Letters 80, 1826–1828 (2002). [CrossRef]
  14. C. Sönnichsen, S. Geier, N. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. Krenn, F. Aussennegg, V. Chan, J. Spatz, M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Letters 77, 2949–2951 (2000). [CrossRef]
  15. A. Hilger, M. Tenfelde, U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B 73, 361–372 (2001). [CrossRef]
  16. T. Okamoto, “Near-field spectral analysis of metallic beads,” Topics Appl. Phys. 81, 97–123 (2001). [CrossRef]
  17. K. Su, Q. Wei, X. Zhang, J. Mock, D. Smith, S. Schultz. “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters 3, 1087–1090 (2003). [CrossRef]
  18. D. Evanoff, R. White, G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108, 1522–1524 (2004). [CrossRef]
  19. M. Miller, A. Lazarides, “Controlling the sensing volume of metal nanosphere molecular sensors,” in Nanoengineered Assemblies and Advanced Micro/Nanosystems, edited by David P. Taylor, Jun Liu, David McIlroy, Lhadi Merhari, J.B. Pendry, Jeffrey T. Borenstein, Piotr Grodzinski, Luke P. Lee, Zhong Lin Wang (Mater. Res. Soc. Symp. Proc. 820, Warrendale, PA,2004), pp 407–413.
  20. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, “Plasmon resonance in large noble-metal clusters,” New J. Phys. 4, 93.1–93.8 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited