OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 7 — Apr. 4, 2005
  • pp: 2767–2773

Planar cavity modes in void channel polymer photonic crystals

Michael James Ventura, Martin Straub, and Min Gu  »View Author Affiliations

Optics Express, Vol. 13, Issue 7, pp. 2767-2773 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1059 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Planar dielectric microcavities embedded in woodpile void channel photonic crystals with stop bands in the stacking direction ranging from 4.3 to 4.8 µm in wavelength were generated by femtosecond-laser direct writing in a solid polymer. Infrared transmission spectra revealed fundamental and second-order modes crossing the stop gap region with a free spectral range of 430 nm on varying the microcavity size from 0.3 to 2.25 µm. Supercell calculations confirmed the cavity size dependence of highly localized cavity modes, whereas the angle of incidence was accounted for using a simple Fabry-Perot model.

© 2005 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(130.3130) Integrated optics : Integrated optics materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Research Papers

Original Manuscript: February 14, 2005
Revised Manuscript: March 25, 2005
Published: April 4, 2005

Michael Ventura, Martin Straub, and Min Gu, "Planar cavity modes in void channel polymer photonic crystals," Opt. Express 13, 2767-2773 (2005)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987) [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987) [CrossRef] [PubMed]
  3. J. D. Joannopoulos, Photonic crystals: modeling the flow of light (Princeton University Press, U.S.A., 1995)
  4. S. G. Johnson and J. D. Joannopoulos, Photonic crystals, the road from theory to practice (Kluwer Academic Publishers, U.S.A., 2002)
  5. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771-1773 (1996) [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B. 58, R10096 (1998). [CrossRef]
  7. A. Sharkawy, S. Shi, and D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247-2252 (2001) [CrossRef]
  8. M. Koshiba, �??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,�?? J. Lightwave Technology 19, 1970-1975 (2001). [CrossRef]
  9. B. Xu and H. Y. Ming, �??Experimental observation of bistability and instability in a two-dimensional nonlinear optical superlattice,�?? Phys. Rev. Lett. 71, 3959-3962 (1993) [CrossRef] [PubMed]
  10. S. F. Mingaleev and Y. S. Kivshar, �??Nonlinear transmission and light localization in photonic-crystal waveguides,�?? J. Opt. Soc. Am. B 19, 2241-2249 (2002) [CrossRef]
  11. M. Solja�?i�?, C. Luo, J. D. Joannopoulos, and S. Fan, �??Nonlinear photonic crystal microdevices for optical integration,�?? Opt. Lett. 28, 637-639 (2003) [CrossRef] [PubMed]
  12. N. Qi, E. Lidorikis, T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, �??A three- dimensional optical photonic crystal with designed point defects,�?? Nature 429, 538-542 (2004) [CrossRef] [PubMed]
  13. J. S. Foresi , P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143-145 (1997) [CrossRef]
  14. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, �??Control of light emission by 3D photonic crystals,�?? Science 305, 227-229 (2004) [CrossRef] [PubMed]
  15. M. M. Beaky, J. B. Burk, H. O. Everitt, M. A. Haider, and S. Venakides, �??Two-dimensional photonic crystal Fabry-Perot resonators with lossy dielectrics,�?? IEEE Trans. Microwave Theory Tech. 47, 2085-2091 (1999) [CrossRef]
  16. H. B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J. Y. Ye, S. Matsuo, and H. Misawa, �??Microcavities in polymeric photonic crystals,�?? Appl. Phys. Lett. 79, 1-3 (2001) [CrossRef]
  17. K. Wostyn, X. Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays, and A. Persoons, �??Insertion of a two-dimensional cavity into a self-assembled colloidal crystal,�?? Langmuir 19, 4465-4468 (2003) [CrossRef]
  18. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, �??Two-dimensional photonic band-gap defect mode laser,�?? Science 284, 1819-1821 (1999) [CrossRef] [PubMed]
  19. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, �??Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal,�?? Appl. Phys. Lett. 82, 3593-3595 (2003) [CrossRef]
  20. S. H. Kim, H. Y. Ryu, H. G. Park, G. H. Kim, and Y. S. Choi, �??Two-dimensional photonic crystal hexagonal waveguide ring laser,�?? Appl. Phys. Lett. 81, 2499-2501 (2002) [CrossRef]
  21. M. J. Ventura, M. Straub, and M. Gu, �??Void channel microstructures in resin solids as an efficient way to infrared photonic crystals,�?? Appl. Phys. Lett. 82, 1649-1651 (2003) [CrossRef]
  22. M. Straub, M. Ventura, and M. Gu, �??Multiple higher-order stop gaps in infrared polymer photonic crystals,�?? Phys. Rev. Lett. 91, 043901 (2003) [CrossRef] [PubMed]
  23. E. �?zbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, �??Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,�?? Phys. Rev. B. 50, 1945-1948 (1994) [CrossRef]
  24. E. Hecht and A. Zajac, Optics (Addison-Wesley Publishing Company, U.S.A., 2002), Chap. 9.
  25. H. Cao, D. B. Hall, J. M. Torkelson, and C. Q. Cao, �??Large enhancement of second harmonic generation in polymer films by microcavities,�?? Appl. Phys. Lett. 76, 538-540 (2000) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited