OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 2843–2851

A high frequency optical trap for atoms using Hermite-Gaussian beams

T. P. Meyrath, F. Schreck, J. L. Hanssen, C. -S. Chuu, and M. G. Raizen  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 2843-2851 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice. We discuss an optical setup to produce the trapping beam and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01 trap. Using this method, we have succeeded in producing individual highly confined lower dimensional condensates.

© 2005 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Research Papers

Original Manuscript: February 28, 2005
Revised Manuscript: March 30, 2005
Published: April 18, 2005

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express 13, 2843-2851 (2005)

Sort:  Journal  |  Reset  


  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, �Observation of Bose-Einstein Condensation in a Dilute Atomics Vapor,� Science 269, 198-201 (1995) [CrossRef] [PubMed]
  2. K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, �Bose-Einstein Condensation in a Gas of Sodium Atoms,� Phys. Rev. Lett. 75, 3969 (1995) [CrossRef] [PubMed]
  3. Conventional magnetic traps refer to Ioffe-Prichard type or TOP traps, atom chip setups may also generate high strength traps because of the close proximity of the atoms to the chip surface [4].
  4. R. Folman, P. Kr�ger, J. Schmiedmayer, J. Denschlag, and C. Henkel, �Microscoptic Atom Optics: From Wires to an Atom Chip,� Adv. At. Mol. Opt. Phys. 48, 263 (2002). [CrossRef]
  5. P. S. Jessen and I. H. Deutsch, �Optical Lattices� Adv. At. Mol. Opt. Phys. 37, 95-138 (1996). [CrossRef]
  6. M. Greiner, O. Mandel, T. Esslinger, T.W. H�nsch, Immanuel Bloch, �Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,� Nature 415, 39 (2002). [CrossRef] [PubMed]
  7. B. Paredes, A. Widera, V. Murg, O. Mandel, S. F�lling, I. Cirac, G.V. Shlyapnikov, T.W. H�nsch, I. Bloch, �Tonks-Girardeau Gas of Ultracold Atoms in an Optical Lattice,� Nature 429, 277 (2004). [CrossRef] [PubMed]
  8. T. Kinoshita, T. Wenger, and D.S. Weiss, �Observation of a One-Dimensional Tonks-Girardeau Gas,� Science 305, 1125 (2004). [CrossRef] [PubMed]
  9. B. Laburthe Tolra, K. M. O�Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston, and J. V. Porto, �Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas,� Phys. Rev. Lett. 92, 190401 (2004). [CrossRef] [PubMed]
  10. R.B. Diener, B. Wu, M.G. Raizen, and Q. Niu, �Quantum Tweezer for Atoms,� Phys. Rev. Lett. 89, 070401 (2002) [CrossRef] [PubMed]
  11. Saleh and Teich, Fundamentals of Photonics, (Wiley, New York, 1991) [CrossRef]
  12. The waist sizes depend on the propagation distance s as W2 q,p(s) = W2 q,p(0)+(?s/?Wq,p(0))2 [11]. This fact results in a weak anti-trap in this direction, see Eq. (8).
  13. R. Grimm, M. Weidem�ller, and Y.B. Ovchinnikov, �Optical Dipole Traps for Neutral Atoms,� Adv. At. Mol. Opt. Phys. 42, 95 (2000). [CrossRef]
  14. N. Freidman, A. Kaplan, N. Davidson, �Dark Optical Traps for Cold Atoms,� Adv. At. Mol. Opt. Phys. 48, 99 (2002). [CrossRef]
  15. MgF2 was chosen because it is a soft coating and more easily makes a sharp feature. This thickness is for a ? relative phase difference at wavelength ? = 532nm
  16. W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, �An Atom Faucet,� Eur. Phys. J. D 15, 237 (2001). [CrossRef]
  17. T. Esslinger, I. Bloch, and T.W. H�nsch, �Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap,� Phys. Rev. A, Vol. 58, pp. R2664 No 4, (1998). [CrossRef]
  18. The TEM01 traps discussed here use laser wavelength ? = 532 nm and the infrared vertical trap uses ? = 1064 nm. These are blue and red relative to the strong transitions of rubidium near 780 nm. Blue traps result in a repulsive potential whereas red traps result in an attractive potential [13].
  19. Yariv and Yeh, Optical Waves in Crystals, (Wiley, New York, 1984).
  20. This is what it means to be lower dimensional, the motion in the strongly confined direction is frozen out and the wave function may be written as the ground state of a single particle harmonic oscillator in the direction in question. This occurs when the three-dimensional chemical potential ?3D is below the harmonic oscillator energy state splitting of the strong direction ?wq [21].
  21. D. S. Petrov, G. V. Shlyapnikov, and J. T. M.Walraven, �Regimes of Quantum Degeneracy in Trapped 1D Gases,� Phys. Rev. Lett. 85, 3745 (2000). [CrossRef] [PubMed]
  22. Y. Castin and R. Dum, �Bose-Einstein Condensates in Time Dependent Traps,� Phys. Rev. Lett. 77 5315 (1996). [CrossRef] [PubMed]
  23. We use values for the D2 line of rubidium 87: Is ~ 1.67mW/cm2, ? _= 2? ? 6.065MHz, w0 _= 2? ? 384.23THz, and m _= 1.443�10-25 kg. In Eq. (3), it is important not to use the common rotating wave approximation (which is to assume |w0 -w|�w0 +w and neglect the second term in parenthesis) because the detuning is too far for this to be valid. This is a larger effect than explicitly including the D1 line which is typically done for nearer detunings.
  24. This is a gradium index lens with f /# = 2.2.
  25. T.P. Meyrath, F. Schreck, J.L. Hanssen, C.-S. Chuu, and M.G. Raizen, �Bose Einstein Condensation in a Box,� Phys. Rev. A (to be published), preprint at cond-mat/0503590
  26. N. L. Smith, W. H. Heathcote, G. Hechenblaikner, E. Nugent, and C. J. Foot, �Quasi-2D Confinement of a BEC in a Combined Optical and Magnetic Potential,� J. Phys. B: At. Mol. Opt. Phys. 38 223-235 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited