OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 2869–2880

Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser

Mitsuru Yokoyama and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 13, Issue 8, pp. 2869-2880 (2005)
http://dx.doi.org/10.1364/OPEX.13.002869


View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the three-dimensional (3D) finite-difference time-domain (FDTD) method, we have investigated in detail the optical properties of a two-dimensional (2D) photonic crystal (PC) surface-emitting laser having a square-lattice structure. In this study we perform the 3D-FDTD calculation for the structure of an actual fabricated device. The device is based on band-edge resonance, and four band edges are present at the corresponding band edge point. For these band edges, we calculate the quality (Q) factor. The results show that the Q factor of a resonant mode labeled A1 is larger than that of other resonant modes; that is, lasing occurs easily in mode A1. The device can thus achieve single-mode lasing oscillation. To increase the Q factor, we also consider the optimization of device parameters. The results provide important guidelines for device fabrication.

© 2004 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.7270) Optoelectronics : Vertical emitting lasers

ToC Category:
Research Papers

History
Original Manuscript: November 4, 2004
Revised Manuscript: March 27, 2005
Published: April 18, 2005

Citation
Mitsuru Yokoyama and Susumu Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser," Opt. Express 13, 2869-2880 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-2869


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, �??Inhibited Spontaneous Emission in Solid-State Physics and Electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, �??Two-Dimensional Photonic Band-Gap Defect Mode Laser,�?? Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  3. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full Three-Dimensional Photonic Crystals at Near-Infrared Wavelengths,�?? Science 289, 604-606 (2000). [CrossRef] [PubMed]
  4. S. Noda, M. Imada, and A. Chutinan, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  5. B. S. Song, S. Noda and T. Asano, �??Photonic devices based on in-plane hetero photonic crystals,�?? Science 300, 1537 (2003). [CrossRef] [PubMed]
  6. S. Noda and T. Baba, Eds., Roadmap on Photonic Crystals, (Kluwer Academic, New York, 2003).
  7. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, �??Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,�?? Appl. Phys. Lett. 75, 316-318 (1999). [CrossRef]
  8. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, �??Multidirectionally distributed feedback photonic crystal lasers,�?? Phys. Rev. B 65, 195306 (2002). [CrossRef]
  9. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization mode control of twodimensional photonic crystal laser by unit cell structure design,�?? Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  10. M. Yokoyama and S. Noda, �??Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure,�?? IEEE J. Quantum Electron. 39, 1074-1080 (2003). [CrossRef]
  11. M. Yokoyama and S. Noda, �??Finite-Difference Time-Domain Simulation of Two-Dimensional Photonic Crystal Surface-Emitting Laser having a Square-Lattice Slab Structure,�?? IEICE Trans. Electron. E87-C, 386-392 (2004).
  12. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos and O. Nalamasu, �??Laser action from two-dimensional distributed feedback in photonic crystals,�?? Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  13. K. Inoue, M. Sasada, J. Kawamata, K. Sakoda and J. W. Haus, �??A Two-Dimensional Photonic Crystal Laser,�?? Jpn. J. Appl. Phys. 38, L157-L159 (1999). [CrossRef]
  14. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel and O. Nalamasu, �??Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding,�?? J. Appl. Phys. 86, 3502-3507 (1999). [CrossRef]
  15. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, �??Quantum cascade surface-emitting photonic crystal laser,�?? Science 302, 1374-1377 (2003). [CrossRef] [PubMed]
  16. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D.M. Tennant, A.M. Sergent, D.L. Sivco, A.Y. Cho, M. Troccoli, and F. Capasso, �??Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,�?? App. Phys. Lett. 84, 4164-4166 (2004). [CrossRef]
  17. K. S. Yee, �??Numerical Solution of Initial Boundary Value Problem Involving Maxwell�??s Equations in Isotropic Media,�?? in Proceedings of IEEE Conference on Antennas and Propagat. AP-14 (Institute of Electrical and Electronics Engineers, New York, 1966), pp. 302-307.
  18. M. Okano and S. Noda, �??Analysis of multimode point-defect cavities in three-dimensional photonic crystals using group theory in frequency and time domains,�?? Phys. Rev. B 70, 125105 (2004). [CrossRef]
  19. M. Plihal, A. Shambrook, and A. A. Maradudin, �??Two-dimensional photonic band structures,�?? Opt. Comm. 80, 199-204 (1991). [CrossRef]
  20. K. Sakoda, �??Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,�?? Phys. Rev. B 52, 7982-7986 (1995). [CrossRef]
  21. K. Sakoda, Optical Properties of Photonic Crystals, (Springer Verlag, Berlin, 2001).
  22. G. Mur, �??Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,�?? in Proceedings of IEEE Conference on Electromagn. Compat. EMC-23 (Institute of Electrical and Electronics Engineers, New York, 1981), pp. 377-382.
  23. O. J. Painter, J. Vuckovic, and A. Scherer, �??Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,�?? J. Opt. Soc. Am. B 16, 275-285 (1999). [CrossRef]
  24. D. Ohnishi, T. Okano, M. Imada, and S. Noda, �??Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,�?? Opt. Express 12, 1562-1568 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562</a>. [CrossRef] [PubMed]
  25. T. Ochiai and K. Sakoda, �??Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,�?? Phys. Rev. B 63, 125107 (2001). [CrossRef]
  26. S. Fan and J. D. Joannopoulos, �??Analysis of guided resonances in photonic crystal slabs,�?? Phys. Rev. B 65, 235112 (2002). [CrossRef]
  27. M. Imada, S. Noda, H. Kobayashi, and G. Sasaki, �??Characterization of a Distributed Feedback Laser with Air/Semiconductor Gratings Embedded by the Wafer Fusion Technique,�?? IEEE J. Quantum Electron. 35, 1277-1283 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited