OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 2948–2960

Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator

Arkadiusz Betlej, Peter Schmitt, Panagiotis Sidereas, Ryan Tracy, Christopher G. Goedde, and John R. Thompson  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 2948-2960 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of the transition from linear to nonlinear amplification of classical pump noise in a fiber Raman generator. In particular, we focus on the conversion of fluctuations in the fine temporal structure of Q-switched pump pulses into Stokes pulse energy fluctuations. We show that there is a distinct pump power domain where large scale fluctuations in the Stokes pulse energy result from the amplification of fluctuations in the temporal structure of pump pulses with stable energies. Dramatic changes in the shape of the Stokes pulse energy probability distribution also occur as the pump power is swept through the domain of large scale energy fluctuations.

© 2004 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Research Papers

Original Manuscript: December 17, 2004
Revised Manuscript: March 31, 2005
Published: April 18, 2005

Arkadiusz Betlej, Peter Schmitt, Panagiotis Sidereas, Ryan Tracy, Christopher Goedde, and John Thompson, "Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator," Opt. Express 13, 2948-2960 (2005)

Sort:  Journal  |  Reset  


  1. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, �??Raman Fibre Laser Operating at 1.24 µm,�?? Electron. Lett. 34, 680 (1998). [CrossRef]
  2. Y. Emori, K. Tanaka, and S. Namiki, �??100 nm Bandwidth Flat-Gain Raman Amplifiers Pumped and Gain Equalized by 12-Wavelength-Channel WDM Laser Diode Unit,�?? Electron. Lett. 35, 1355 (1999). [CrossRef]
  3. D. V. Gapontsev, S. V. Chernikov, and J. R. Taylor, �??Fibre Raman Amplifiers for Broadband Operation at 1.3 µm,�?? Opt. Commun. 166, 85�??88 (1999). [CrossRef]
  4. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, �??Fibre-Optic Tunable CW Raman Laser Operating Around 1.3 µm,�?? Opt. Commun. 182, 403�??405 (2000). [CrossRef]
  5. M. Prabhua, N. S. Kim, L. Jianrena, and K.-I. Ueda, �??Simultaneous Two-Color CW Raman Fiber Laser With Maximum Output Power of 1.05 W/1239 nm and 0.95 W/1484 nm Using Phosphosilicate Fiber,�?? Opt. Commun. 182, 305�??309 (2000). [CrossRef]
  6. L. F. Mollenauer, A. R. Grant, and P. V. Mamyshev, �??Time-Division Multiplexing of Pump Wavelengths to Achieve Ultrabroadband, Flat, Backward-Pumped Raman Gain,�?? Opt. Lett. 27, 592�??594 (2002). [CrossRef]
  7. D. A. Chestnut, C. J. S. de Matos, P. C. Reeves-Hall, and J. R. Taylor, �??Copropagating and Counterpropagating Pumps in Second-Order Pumped Discrete Fiber Raman Amplifiers,�?? Opt. Lett. 27, 1708�??1710 (2002). [CrossRef]
  8. R. Waarts, V. Dominic, D. Giltner, and D. Mehuys, �??Raman Amplification Enhances System Operation,�?? WDM Solutions pp. 27�??32 (2000).
  9. I. A. Walmsley and M. G. Raymer, �??Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering,�?? Phys. Rev. Lett. 50, 962�??965 (1983). [CrossRef]
  10. N. Fabricius, K. Nattermann, and D. von der Linde, �??Macroscopic Manifestations of Quantum Fluctuations in Transient Stimulated Raman Scattering,�?? Phys. Rev. Lett. 52, 113�??116 (1984). [CrossRef]
  11. D. C. MacPherson, R. C. Swanson, and J. L. Carlsten, �??Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth,�?? Phys. Rev. Lett. 23, 66�??69 (1988). [CrossRef]
  12. R. G. Smith, �??Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,�?? Appl. Opt. 11, 2489�??2494 (1972). [CrossRef] [PubMed]
  13. J. Auyeung and A. Yariv, �??Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers,�?? IEEE J. Quantum Electron. 14, 347�??352 (1978). [CrossRef]
  14. F. R. Barbosa, �??Quasi-Stationary Multiple Stimulated Raman Generation in the Visible Using Optical Fibers,�?? Appl. Opt. 22, 3859�??3863 (1983). [CrossRef] [PubMed]
  15. R. H. Stolen, C. Lee, and R. K. Jain, �??Development of the Stimulated Raman Spectrum in Single-Mode Silica Fibers,�?? J. Opt. Soc. Am. B 1, 652�??657 (1984). [CrossRef]
  16. K. X. Liu and E. Garmire, �??Understanding the Formation of the SRS Stokes Spectrum in Fused Silica Fibers,�?? IEEE J. Quantum Electron. 27, 1022�??1030 (1991). [CrossRef]
  17. C. Yijiang and A. W. Snyder, �??Saturation and Depletion Effect of Raman Scattering in Optical Fibers,�?? J. Lightwave Technol. 7, 1109�??1116 (1989). [CrossRef]
  18. D. Dahan, A. Bilenca, and G. Eisenstein, �??Noise-Reduction Capabilities of a Raman-Mediated Wavelength Converter,�?? Opt. Lett. 28, 634�??636 (2003). [CrossRef] [PubMed]
  19. M. Lewenstein, �??Fluctuations in the Nonlinear Regime of Stimulated Raman Scattering,�?? Zeitschrift für Physik B 56, 69�??75 (1984). [CrossRef]
  20. I. A. Walmsley, M. G. Raymer, T. S. II, I. N. D. III, and J. D. Kafka, �??Stabilization of Stokes Pulse Energies in the Nonlinear Regime of Stimulated Raman Scattering,�?? Opt. Commun. 53, 137�??140 (1985). [CrossRef]
  21. A. T. Georges, �??Theory of Stimulated Raman Scattering in a Chaotic Incoherent Pump Field,�?? Opt. Commun. 41, 61�??66 (1982). [CrossRef]
  22. M. Trippenbach, K. Rz�?żewski, and M. G. Raymer, �??Stimulated Raman Scattering of Colored Chaotic Light,�?? J. Opt. Soc. Am. B 1, 671�??675 (1984). [CrossRef]
  23. A. S. Grabtchikov, A. I. Vodtchits, and V. A. Orlovich, �??Pulse-Energy Statistics in the Linear Regime of Stimulated Raman Scattering with a Broad-Band Pump,�?? Phys. Rev. A 56, 1666�??1669 (1997). [CrossRef]
  24. L. Garcia, J. Jenkins, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, �??Influence of Classical Pump Noise on Long-Pulse Multiorder Stimulated Raman Scattering in Optical Fiber,�?? J. Opt. Soc. Am. B 19, 2727�??2736 (2002). [CrossRef]
  25. H.-S. Seo and K. Oh, �??Optimization of Silica Fiber Raman Amplifier Using the Raman Frequency Modeling for an Arbitrary GeO2 Concentration in the Core,�?? Opt. Commun. 181, 145�??151 (2000). [CrossRef]
  26. W. P. Urquhart and P. J. R. Laybourn, �??Stimulated Raman Scattering in Optical Fibers With Nonconstant Loss: A Multiwavelength Model,�?? Appl. Opt. 25, 2592�??2599 (1986). [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Boston, 1995).
  28. J. Correa, E. Manzano, R. Tracy, and J. R. Thompson, �??Correlations Between Intensity Fluctuations Within Stimulated Brillouin Waveforms Generated by Scattering of Q-Switched Pulses in Optical Fiber,�?? Opt. Commun. 242, 267�??278 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (655 KB)     
» Media 2: MOV (1552 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited