OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 2994–2999

Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography

W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang  »View Author Affiliations


Optics Express, Vol. 13, Issue 8, pp. 2994-2999 (2005)
http://dx.doi.org/10.1364/OPEX.13.002994


View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

From the view of crystallography, a systematic theoretical study on one-step formation of two-dimensional compound photonic lattices by four noncoplanar elliptical waves is presented. A general formula for the interference intensity of N elliptically polarized waves, and relevant phase shifts that compensate for the initial phases and control the relative position and size of the motifs, have been deduced. Using appropriate polarization configurations, four kinds of beam geometries can be used to form various compound lattices. This provides an ideal new experimental platform for fabricating large-area compound photonic lattices.

© 2005 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5430) Physical optics : Polarization

ToC Category:
Research Papers

History
Original Manuscript: January 13, 2005
Revised Manuscript: March 23, 2005
Published: April 18, 2005

Citation
W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, "Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography," Opt. Express 13, 2994-2999 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-2994


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987) [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Blur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998). [CrossRef]
  4. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  5. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature (London) 414, 289-293 (2001). [CrossRef]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000). [CrossRef]
  7. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, "Threedimensional photonic crystals fabricated by visible light holographic lithography," Appl. Phys. Lett. 82, 2212-2214 (2003). [CrossRef]
  8. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15,1526-1528 (2003). [CrossRef]
  9. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434- 5436 (2004). [CrossRef]
  10. A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A Pure Appl. Opt. 1, L3�?? L6 (1999). [CrossRef]
  11. A. Feigel, Z. Kotler, and B. Sfez, "Scalable interference lithography alignment for fabrication of three-dimensional photonic crystals," Opt. Lett. 27, 746-748 (2002). [CrossRef]
  12. Max Born, and Emil Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  13. W.D. Mao, Y.C. Zhong, J.W. Dong, and H.Z. Wang, "Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams," J. Opt. Soc. Am. B (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited