OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 3021–3036

Excitation strategies for optical lattice microscopy

Eric Betzig  »View Author Affiliations


Optics Express, Vol. 13, Issue 8, pp. 3021-3036 (2005)
http://dx.doi.org/10.1364/OPEX.13.003021


View Full Text Article

Enhanced HTML    Acrobat PDF (2576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, new classes of optical lattices were identified, permitting the creation of arbitrarily large two- and three-dimensional arrays of tightly confined excitation maxima of controllable periodicity and polarization from the superposition of a finite set of plane waves. Here, experimental methods for the generation of such lattices are considered theoretically in light of their potential applications, including high resolution dynamic live cell imaging, photonic crystal fabrication, and quantum simulation and quantum computation using ultracold atoms.

© 2005 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(050.1960) Diffraction and gratings : Diffraction theory
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Research Papers

History
Original Manuscript: January 31, 2005
Revised Manuscript: April 4, 2005
Published: April 18, 2005

Citation
Eric Betzig, "Excitation strategies for optical lattice microscopy," Opt. Express 13, 3021-3036 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-3021


Sort:  Journal  |  Reset  

References

  1. J. Zhang, R.E. Campbell, A.Y. Ting, and R.Y. Tsien, �??Creating new fluorescent probes for cell biology,�?? Nat. Rev. Mol. Cell Biol. 3, 906-918 (2002). [CrossRef] [PubMed]
  2. D. Axelrod, �??Total internal fluorescence microscopy,�?? in Methods in Cellular Imaging, A. Periasamy, ed., American Physiological Society Book Series (Oxford Univ. Press, 2001).
  3. G.E. Cragg and P.T.C. So, �??Lateral resolution enhancement with standing evanescent waves,�?? Opt. Lett 25, 46-48 (2000). [CrossRef]
  4. S.W. Hell and J. Wichmann, �??Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,�?? Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  5. C.Y. Dong, P.T.C. So, C. Buehler, and E. Gratton, �??Spatial resolution in scanning pump-probe fluorescence microscopy,�?? Optik 106, 7-14 (1997).
  6. LZ. Cai, X.L. Wang, and Y.R. Wang, �??All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,�?? Opt. Lett. 27, 900-902 (2002). [CrossRef]
  7. L. Yuan, G.P. Wang, and X. Huang, �??Arrangements of four beams for any Bravais lattice,�?? Opt. Lett. 1769-1771 (2003). [CrossRef] [PubMed]
  8. B. Bailey, D.L. Farkas, D.L. Taylor, and F. Lanni, �??Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,�?? Nature 366, 44-48 (1993). [CrossRef] [PubMed]
  9. M.A.A. Neil, R. Juskaitis, and T. Wilson, �??Method of obtaining optical sectioning by using structured light in a conventional microscope,�?? Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  10. M.G.L. Gustafsson, D.A. Agard, and J.W. Sedat, �??I5M: 3D widefield light microscopy with better than 100 nm axial resolution,�?? J. Microsc. 195, 10-16 (1999). [CrossRef] [PubMed]
  11. M.G.L. Gustafsson, �??Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,�?? J. Microsc. 198 82-87 (2000). [CrossRef] [PubMed]
  12. J.T. Frohn, H.F. Knapp, and A. Stemmer, �??True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,�?? Proc. Natl. Acad. Sci. USA 97, 7232-7236 (2000). [CrossRef] [PubMed]
  13. V. Berger, O. Gauthler-Lafaye, and E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  14. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  15. D.C. Meisel, M. Wegener, and K. Busch, �??Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,�?? Phys. Rev. B 70, 165104 (2004). [CrossRef]
  16. P.S. Jessen, et al., �??Observation of quantized motion of Rb atoms in an optical field,�?? Phys. Rev. Lett. 69, 49-52 (1992). [CrossRef] [PubMed]
  17. A. Hemmerich and T.W. Hänsch, �??Two-dimensional atomic crystal bound by light,�?? Phys. Rev. Lett. 70, 410-413 (1993). [CrossRef] [PubMed]
  18. G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, and C. Salomon, �??Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,�?? Phys. Rev. Lett. 70, 2249-2252 (1993). [CrossRef] [PubMed]
  19. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, �??Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,�?? Nature 415, 39 (2002). [CrossRef] [PubMed]
  20. J.I. Cirac and P. Zoller, �??How to manipulate cold atoms,�?? Science 301, 176-177 (2003). [CrossRef] [PubMed]
  21. R. Dumke, et al, �??Micro-optical realization of arrays of selectively addressable dipole traps: A scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002). [CrossRef] [PubMed]
  22. J.I. Cirac and P. Zoller, "New frontiers in quantum information with atoms and ions," Phys. Today 57, No. 3, 38-44 (2004).
  23. K.I. Petsas, A.B. Coates, and G. Grynberg, �??Crystallography of optical lattices,�?? Phys. Rev. A 50, 5173-5189 (1994). [CrossRef] [PubMed]
  24. E. Betzig, New Millennium Research, LLC, Okemos, MI 48864 has submitted a paper entitled �??Sparse and composite coherent lattices�??.
  25. E. Betzig, New Millennium Research, LLC, Okemos, MI 48864 is preparing a paper to be called �??Detection strategies for optical lattice microscopy�??.
  26. M.J. Booth, M.A.A. Neil, R. Juškaitis, and T. Wilson, �??Adaptive aberration correction in a confocal microscope,�?? Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002). [CrossRef] [PubMed]
  27. J.D. Jackson, Classical Electrodynamics, second ed. (Wiley, New York, 1975), Secs. 9.8 and 9.9.
  28. M. Born and E. Wolf, Principles of Optics, sixth (corrected) ed. (Pergamon, Oxford, 1980), Sec. 8.8.
  29. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996). [CrossRef]
  30. S. Hell and E.H.K. Stelzer, �??Properties of a 4Pi confocal fluorescence microscope,�?? J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  31. E. Wolf, �??Electromagnetic diffraction in optical systems I. An integral representation of the image field,�?? Proc. R. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  32. B. Richards and E. Wolf, �??�??Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,�?? Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]
  33. S.F. Gibson and F. Lanni, �??Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,�?? J. Opt. Soc. Am. A8, 1601-1613 (1991). [CrossRef]
  34. E.R. Dufresne and D.G. Grier, �??Optical tweezer arrays and optical substrates created with diffractive optics,�?? Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  35. G. Timp, et al., �??Using light as a lens for submicron, neutral-atom lithography,�?? Phys. Rev. Lett. 69, 1636 -1639(1992). [CrossRef] [PubMed]
  36. J.J. McClelland, R.E. Scholten, E.C. Palm, and R.J. Celotta, �??Laser-focused atomic deposition�??, Science 262, 877-880 (1993). [CrossRef] [PubMed]
  37. M. Mützel, et al., �??Atomic nanofabrication with complex light fields,�?? Appl. Phys. B. 77, 1-9 (2003). [CrossRef]
  38. T. Tanaka, H.B. Sun, and S. Kawata, �??Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,�?? Appl. Phys. Lett. 80, 312-314 (2002). [CrossRef]
  39. X.L. Yang, L.Z. Cai, and Y.R. Wang, �??Larger bandgaps of two-dimensional triangular photonic crystals fabricated by holographic lithography can be realized by recording geometry design,�?? Opt. Express 12, 5850-5856 (2004). [CrossRef] [PubMed]
  40. Perkin-Elmer UltraVIEW Live Cell Imager, <a href="http://las.perkinelmer.com/content/livecellimaging/nipkow.asp">http://las.perkinelmer.com/content/livecellimaging/nipkow.asp</a>
  41. M. Petran, M. Hadravsky, M.D. Egger, R. Galambos, �??Tandem-scanning reflected-light microscope,�?? J. Opt. Soc. Am. 58, 661-664 (1968). [CrossRef]
  42. K. Bahlmann and S.W. Hell, �??Electric field depolarization in high aperture focusing with emphasis on annular apertures,�?? J. Microsc. 200, 59-67 (2000). [CrossRef] [PubMed]
  43. E. Betzig, New Millennium Research, LLC, Okemos, MI 48864 is preparing a paper to be called �??Optical lattice microscopy: implications for live cell and molecular imaging�??.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1270 KB)     
» Media 2: MOV (1841 KB)     
» Media 3: MOV (2422 KB)     
» Media 4: MOV (1082 KB)     
» Media 5: MOV (1035 KB)     
» Media 6: MOV (564 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited