OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 3049–3054

Simple microcavity for single-photon generation

Taras Plakhotnik  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 3049-3054 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (~99.9%) and the losses in the polymer (100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer.

© 2005 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(270.5290) Quantum optics : Photon statistics

ToC Category:
Research Papers

Original Manuscript: February 17, 2005
Revised Manuscript: April 5, 2005
Published: April 18, 2005

Taras Plakhotnik, "Simple microcavity for single-photon generation," Opt. Express 13, 3049-3054 (2005)

Sort:  Journal  |  Reset  


  1. D. Bouwmeester, A. Ekert, and A. Zeilinger eds., The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation (Springer, Berlin , 2000). [PubMed]
  2. E. Knill, R. Laflamme and G. J. Milburn. �??A scheme for efficient quantum computation with linear optics,�?? Nature 409 46 (2001). [CrossRef] [PubMed]
  3. G. Brassard, N. Lütkenhaus, T. Mor, and B.C. Sanders. �??Limitations on practical quantum cryptography,�?? Phys. Rev. Lett. 85, 1330-1333 (2000). [CrossRef] [PubMed]
  4. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit. �??Triggered source of single photons based on controlled single molecule fluorescence,�?? Phys. Rev. Lett. 83, 2722-2725 (1999). [CrossRef]
  5. B. Lounis, W.E. Moerner. �??Single photons on demand from a single molecule at room temperature,�?? Nature 407, 491 (2000). [CrossRef] [PubMed]
  6. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamogùlu,�??A Quantum Dot Single-Photon Turnstile Device,�?? Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  7. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto . �??Efficient Source of Single Photons: A single quantum dot in a microposts microcavity,�?? Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  8. A. J. Bennett , D. C. Unitt, P. Atkinson, D. A. Ritchie and A. J. Shields, �??High performance single photon sources from photo lithographically defined pillar microcavities,�?? Opt. Express 13, 50-55 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50. <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-50</a>. [CrossRef] [PubMed]
  9. W.E. Moerner, �??Single-photon sources based on single molecules in solids,�?? New J. Phys. 6, 27 (2004). [CrossRef]
  10. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, �??Room temperature stable single Photon source,�?? Eur. Phys. J. D 18, 191-196 (2002). [CrossRef]
  11. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, �??Continuous generation of single photons with controlled waveform in an ion-trap cavity system,�?? Nature 431, 1075-1078 (2004). [CrossRef] [PubMed]
  12. Y. Ben, Z. Hao, C. Sun, F. Ren, N. Tan and Y. Luo, �??Three-dimensional photonic-crystal cavity with an embedded quantum dot as a nonclassical light emitter,�?? Opt. Express 12, 5146-5152 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146</a>. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5146. [CrossRef] [PubMed]
  13. W.L. Barnes,a, G. Björk2, J.M. Gérard, P. Jonsson, J.A.E. Wasey, P.T. Worthing, and V. Zwiller, �??Solid-state single photon sources: light collection strategies�??, Eur. Phys. J. D 18, 197�??210 (2002). [CrossRef]
  14. For a review see K.J. Vahala, �??Optical microcavities,�?? Nature 424, 840-846 (2003). [CrossRef]
  15. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto. �??Optimization of three-dimensional microposts microcavities for cavity quantum electrodynamics,�?? Phys. Rev. A 66, 023808 (2002). [CrossRef]
  16. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto. �??Three-dimensionally confined modes in micropost microcavities: Quality Factors and Purcell Factors,�?? IEEE J. Quantum. Electron. 38, 170-177 (2002). [CrossRef]
  17. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble, �??Deterministic generation of single photons from one atom trapped in a cavity,�?? Science 303, 1992-1994 (2004). [CrossRef] [PubMed]
  18. V.B. Braginsky, M.L. Gorodetsky, and V.S. Ilchenko. �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A 137, 393 (1989). [CrossRef]
  19. L. Pang, Y. Shen, K. Tetz and Y. Fainman, �??PMMA quantum dots composites fabricated via use of pre-polymerization,�?? Opt. Express 13, 44-49 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44</a> . http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-44 . [CrossRef] [PubMed]
  20. F. De Martini, G. Di Giuseppe, and M. Marrocco. �??Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,�?? Phys. Rev. Lett. 76, 900-903 (1996). [CrossRef] [PubMed]
  21. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, J. L. Pelouard, �?? High-Q wet-etched GaAs microdisks containing InAs quantum boxes,�?? Appl. Phys.Lett. 75, 1908�??1910 (1999). [CrossRef]
  22. T. Plakhotnik, E.A. Donley, U.P. Wild, �??Single molecule spectroscopy�??, Annu. Rev. Phys. Chem. 48181-212 (1997). [CrossRef] [PubMed]
  23. X. S. Xie, J.K. Trautman, �??Optical studies of single molecules at room temperatures�??, Annu. Rev. Phys. Chem. 49, 441-480 (1998). [CrossRef]
  24. M. Ehrl, F.W. Deeg, C. Bräuchle, O. Franke, A. Sobbi, G. Schulz-Ekloff, D. Wöhrle, �??High-temperature non-photochemical hole-burning phthalocyanine-Zinc derivatives embedded in hydrated AlPO4-5 molecular sieve�??, J. Phys. Chem. 98, 47-52 (1994). [CrossRef]
  25. L. Eldada, L. W. Shacklette, �??Advances in Polymer Integrated Optics,�?? IEEE J. Selected Topics in Quantum Electron. 6, 54-68 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.



« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited