OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 3129–3135

High speed silicon Mach-Zehnder modulator

Ling Liao, Dean Samara-Rubio, Michael Morse, Ansheng Liu, Dexter Hodge, Doron Rubin, Ulrich D. Keil, and Thorkild Franck  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 3129-3135 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a silicon modulator with an intrinsic bandwidth of 10 GHz and data transmission from 6 Gbps to 10 Gbps. Such unprecedented bandwidth performance in silicon is achieved through improvements in material quality, device design, and driver circuitry.

© 2005 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Research Papers

Original Manuscript: March 10, 2005
Revised Manuscript: April 7, 2005
Published: April 18, 2005

Ling Liao, Dean Samara-Rubio, Michael Morse, Ansheng Liu, Dexter Hodge, Doron Rubin, Ulrich Keil, and Thorkild Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005)

Sort:  Journal  |  Reset  


  1. R. A. Soref and B. R. Bennett, �??Electrooptical effects in silicon,�?? IEEE J. Quantum Electron. QE-23, 123-129 (1987). [CrossRef]
  2. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia., �??A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor.�?? Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  3. D. Samara-Rubio, L. Liao, A. Liu, R. Jones, M. Paniccia, D. Rubin, and O. Cohen, �??A gigahertz silicon-on-insulator Mach-Zehnder modulator,�?? in Optical Fiber Communication Conference, Vol. 2 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 2004), pp. 3-5.
  4. D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. Hodge, D. Rubin, and R. Cohen, �??Customized drive electronics to extend silicon optical modulators to 4Gbps,�?? submitted for publication.
  5. L. Liao, D. Lim, A. Agarwal, X. Duan, K. Lee, and L. Kimerling, �??Optical transmission losses in polycrystalline silicon strip waveguides: effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength,�?? J. Electronic Materials 29, 1380-1386 (2000). [CrossRef]
  6. S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, �??Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth,�?? IEEE Electron. Dev. Lett. 20, 194-196 (1999). [CrossRef]
  7. R.A. Soref and J. P. Larenzo, �??All-silicon active and passive guided-wave components for λ=1.3 & 1.6µm,�?? IEEE J. Quantum Electron. QE-22, 873�??879 (1986). [CrossRef]
  8. L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, �??Phase modulation efficiency and transmission loss of silicon optical phase shifters,�?? IEEE J. Quantum Electron. QE-41, 250-257 (2005). [CrossRef]
  9. V. Almeida, R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Optics Letters 28, 1302-1304 (2003). [CrossRef] [PubMed]
  10. G. Masanovic, V. Passaro, and G. Reed, �??Coupling to nanophotonic waveguides using a dual grating-assisted directional coupler,�?? IEE Proc.- Optoelectronics 152, 41-48 (2005). [CrossRef]
  11. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, �??Microphotonics devices based on silicon microfabrication technology,�?? IEEE J. Selected Topics in Quantum Electron. 11, 232-240 (2005). [CrossRef]
  12. P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, �??CMOS compatible fully integrated Mach-Zehnder interferometer in SOI technology,�?? IEEE Photon. Technol. Lett. 12, 660-662, (2000). [CrossRef]
  13. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, �??Submicrosecond, submilliwatt, silicon on insulator thermooptic switch,�?? Integrated Photonics Research Conference Proceedings, Paper IWA2, San Francisco, June 30, 2004.
  14. E. L. Wooten et al. �??A review of lithium niobate modulators for fiber-optic communications systems,�?? IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000). [CrossRef]
  15. M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, �??Fully packaged, broad-band LiNbO3 modulator with low drive voltage," IEEE Photon. Technol. Lett. 12, 792-794 (2000). [CrossRef]
  16. J. E. Zucker, K. L. Jones, B. I. Miller, and U. Koren, �??Miniature Mach-Zhender InGaAsP quantum well waveguide interferometers for 1.3 µm,�?? IEEE Photon. Technol. Lett. 2, 32-34 (1990). [CrossRef]
  17. J. S. Cites and P. R. Ashley, �??High-performance Mach-Zehnder modulators in multiple quantum well GaAs/AlGaAs,�?? J. Lightwave Technol. 12, 1167-1173 (1992). [CrossRef]
  18. M. Fetterman, C.-P. Chao, and S. R. Forrest, �??Fabrication and analysis of high-contrast InGaAsP-InP Mach-Zehnder modulators for use at 1.55 µm wavelength,�?? IEEE Photon. Technol. Lett. 8, 69-71 (1996). [CrossRef]
  19. T. Ido et al., �??Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,�?? J. Lightwave Technol. 14, 2026-2034 (1996). [CrossRef]
  20. A. Liu, D. Samara-Rubio, L. Liao, and M. Paniccia, �??Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,�?? IEEE J. Sel. Top. Quantum Electron. 11, (March/April 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited