OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 8 — Apr. 18, 2005
  • pp: 3166–3173

A photonic crystal superlattice based on triangular lattice

Curtis W. Neff and Christopher J. Summers  »View Author Affiliations

Optics Express, Vol. 13, Issue 8, pp. 3166-3173 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-dimensional superlattice photonic crystal structure is investigated in which the holes in adjacent rows of a triangular lattice alternate between two different radii. The superimposition of a superlattice on a triangular lattice is shown to reduce the photonic bandgap, introduce band splitting, and change the dispersion contours so that dramatic effects are seen in the propagation, refraction, and dispersion properties of the structure. For single mode propagation, the superlattice shows regions of both positive and negative refraction as well as refraction at normal incidence. The physical mechanisms responsible for these effects are directly related to Brillouin Zone folding effects on the triangular lattice that lowers the lattice symmetry and introduces anisotropy in the lattice.

© 2005 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

Original Manuscript: March 15, 2005
Revised Manuscript: April 11, 2005
Published: April 18, 2005

Curtis Neff and Christopher Summers, "A photonic crystal superlattice based on triangular lattice," Opt. Express 13, 3166-3173 (2005)

Sort:  Journal  |  Reset  


  1. J. P. Dowling and C. Bowen, �??Anomalous index of refraction in photonic bandgap materials,�?? J. Mod. Opt. 41, 345 (1994). [CrossRef]
  2. S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771 (1996). [CrossRef] [PubMed]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10,096 (1998). [CrossRef]
  4. M. Notomi, �??Theory of light propagating in strongly modulated photonic crystal: Refraction like behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62(16), 10,696 (2000).
  5. J. Bravo-Abad, T. Ochiai, and J. S`anchez-Dehesa, �??Anomalous refractive properties of a two-dimensional photonic band-gap prism,�?? Phys. Rev. B 67, 115,116 (2003). [CrossRef]
  6. W. Park and C. J. Summers, �??Extraordinary refraction and dispersion in two-dimensional photonic-crystal slabs,�?? Opt. Lett. 27(16), 1397 (2002). [CrossRef]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,�?? Appl. Phys. Lett. 74(10), 1370 (1999). [CrossRef]
  8. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, �??Superprism phenomena in planar photonic crystals,�?? IEEE J. Quantum Electron. 38(7), 915 (2002).
  9. T. Baba and M. Nakamura, �??Photonic crystal light deflection devices using the superprism effect,�?? IEEE J. Quantum Electron. 38(7), 909 (2002). [CrossRef]
  10. W. Park, J. S. King, C. W. Neff, C. Liddell, and C. J. Summers, �??ZnS-based photonic crystals,�?? Phys. Status Solidi B 229(2), 949 (2002). [CrossRef]
  11. T. Baba and T. Matsumoto, �??Resolution of photonic crystal superprism,�?? Appl. Phys. Lett. 81, 2325 (2002). [CrossRef]
  12. W. Park and C. J. Summers, �??Optical properties of superlattice photonic crystal waveguides,�?? Appl. Phys. Lett. 84(12), 2013 (2004). [CrossRef]
  13. C. J. Summers, C. W. Neff, and W. Park, �??Active Photonic Crystal Nano-Architectures,�?? J. Nonlinear Optical Phys. and Mater. 12(4), 587 (2003). [CrossRef]
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (W. B. Saunders, 1976).
  15. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8(3), 173 (2001). [CrossRef]
  16. A. J. Ward and J. B. Pendry, �??A program for calculating photonic band structures and Green�??s functions using a non-orthogonal FDTD method,�?? Comput. Phys. Commun. 112(1), 23 (1998). [CrossRef]
  17. C. T. Chan, Q. L. Yu, and K. M. Ho, �??Order-N spectral method for electromagnetic waves,�?? Phys. Rev. B 51(23), 16,635 (1995).
  18. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60(8), 5751 (1999). [CrossRef]
  19. J. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185�??200 (1994). [CrossRef]
  20. L. Zhao and A. Cangellaris, �??GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids,�?? IEEE Trans. Microwave Theory Tech. 44, 2555�??2563 (1996). [CrossRef]
  21. P. J. Russell and T. A. Birks, �??Bloch wave optics in photonic crystals: physics and applications,�?? in Photonic band gap materials, C. M. Soukoulis, ed., no. 315 in NATO ASI series. Series E, Applied Sciences, p. 71 (Kluwer, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited