OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3196–3207

PlaneWave Admittance Method — a novel approach for determining the electromagnetic modes in photonic structures

Maciej Dems, Rafal Kotynski, and Krassimir Panajotov  »View Author Affiliations

Optics Express, Vol. 13, Issue 9, pp. 3196-3207 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article we present a novel approach for determining the electromagnetic modes of photonic multilayer structures. We combine the plane wave expansion method with the method of lines resulting in a fast and accurate computational technique which we named the plane wave admittance method. In addition, we incorporate perfectly matched layers at the boundaries parallel to the multilayer surfaces which allow for easy determination of leaky modes. The convergence of the method is verified for the case of photonic crystal slab showing very good agreement with the results obtained with full three-dimensional plane wave expansion method while the numerical effort is largely reduced. The numerical implementation of the method will be soon available on the web.

© 2005 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(230.4170) Optical devices : Multilayers
(230.7400) Optical devices : Waveguides, slab
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

Original Manuscript: February 14, 2005
Revised Manuscript: March 30, 2005
Published: May 2, 2005

Maciej Dems, Rafal Kotynski, and Krassimir Panajotov, "PlaneWave Admittance Method�?? a novel approach for determining the electromagnetic modes in photonic structures," Opt. Express 13, 3196-3207 (2005)

Sort:  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, a J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin 2001).
  3. N. Yokouchi, A. J. Danner, and K. D. Choquette, �??Two-Dimensional Photonic Crystal Confined Vertical-Cavity Surface-Emitting Lasers,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1439�??1445 (2003). [CrossRef]
  4. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artec House Inc., Boston, 1995).
  5. S. Datta, C. T. Chan, K. M. Ho, and C. M. Soukoulis, �??Photonic band gaps in periodic dielectric structures: The scalar-wave approximation,�?? Phys. Rev. B 46, 10650�??10656 (1992). [CrossRef]
  6. S. Johnson and J. D. Joannopoulous, �??Block Iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]
  7. S. Guo and S. Albin, �??Simple plane wave implementation for photonic crystal calculations,�?? Opt. Express 11, 167�??175 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-167</a>. [CrossRef] [PubMed]
  8. H. S. Sözuer and J. W. Haus, �??Photonic bands: convergence problems with the plane-wave method,�?? Phys. Rev. B 45, 13962�??13972 (1992). [CrossRef]
  9. Ch. Sauvan, Ph. Lalanne, and J. P. Hugonin, �??Truncation rules for modelling discontinuities with Galerkin method in electromagnetic theory,�?? Opt. Quantum Electron. 36, 271�??284, 2004. [CrossRef]
  10. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulous, and O. L. Alerhand, �??Accurate theoretical analysis of photonic band-gap materials,�?? Phys. Rev. B 48, 8434�??8437 (1993). [CrossRef]
  11. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276�??278 (1999). [CrossRef]
  12. J. M. Pottage, D. Bird, T. D. Hedley, J. C. Knight, T. A. Birks, P. S. J Russell, and P. J. Roberts, �??Robust photonic band gaps for hollow core guidance in PCF made from high index glass,�?? Opt. Express 11, 2854�??2861 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854</a>. [CrossRef] [PubMed]
  13. S. Shi, C. Chen, and D.W. Prather, �??Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,�?? Appl. Phys. Lett. 86, 043104 (2005), <a href= "http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000011000004000041000001">http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000011000004000041000001</a>. [CrossRef]
  14. P. Lalanne, �??Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,�?? IEEE J. Quantum Electron. 38, 800-804 (2002). [CrossRef]
  15. M. Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? Appl. Phys. Lett. 81 1163�??1165 (2002). [CrossRef]
  16. P. Bienstman, �??Two-stage mode finder for waveguides with a 2D cross-section,�?? Opt. Quantum Electron. 36, 5�??14, 2004. [CrossRef]
  17. K. Ohtaka, J. Inoue, and S. Yamaguti, �??Derivation of the density of states of leaky photonic bands,�?? Phys. Rev. B 70 035109 (2004). [CrossRef]
  18. S. F. Helfert, R. Pregla,�??Efficient Analysis of Periodic Structures,�?? J. Lightwave Technol. 16, 1694�??1702 (1998). [CrossRef]
  19. O. Conradi, S. F. Helfert, and R. Pregla, �??Comprehensive Modeling of Vertical-Cavity Laser-Diodes by the Method of Lines,�?? IEEE J. Quantum Electron. 37, 928�??935 (2001). [CrossRef]
  20. S. F. Helfert, A. Barcz, and R. Pregla, �??Three-dimensional vectorial analysis of waveguide structures with the method of lines,�?? Opt. Quantum Electron. 35, 381�??394 (2003). [CrossRef]
  21. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185�??200 (1994). [CrossRef]
  22. H. Derudder, F. Olyslager, D. De Zuter, S. Van den Berghe, �??Efficient Mode-Matcing Analysis of Discontinuities in Finit Planar Substrates Using Perfectly Matched Layers,�?? IEEE Trans. Antennas and Propagation 49, 185�??195 (2001). [CrossRef]
  23. T. Czyszanowski, �??Comparative Analysis of Validity Limits of Scalar and Vector Approaches to Optical Fields in Diode Lasers,�?? Ph.D. diss., Technical University of Lodz (2004).
  24. S. Shi, C. Chen, and D. W. Prather, �??Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,�?? J. Opt. Soc. Am. A 21, 1769�??1775 (2004) [CrossRef]
  25. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulous, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751�??5758 (1999) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited