OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3236–3241

Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight  »View Author Affiliations

Optics Express, Vol. 13, Issue 9, pp. 3236-3241 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the complete characterization of the self-similar scaling of parabolic pulse similaritons in an optical fiber amplifier. High dynamic range frequency resolved optical gating allows the direct observation of the evolution of a hyperbolic secant-like input pulse to an asymptotic amplifier similariton, and reveals the presence of intermediate asymptotic wings about the parabolic pulse core. These results are used to optimize additional self-similar propagation in highly-nonlinear fiber and subsequent compression in hollow-core photonic bandgap fiber.

© 2005 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Research Papers

Original Manuscript: March 22, 2005
Revised Manuscript: April 13, 2005
Published: May 2, 2005

C. Billet, John Dudley, N. Joly, and J. Knight, "Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm," Opt. Express 13, 3236-3241 (2005)

Sort:  Journal  |  Reset  


  1. See for example: P. L. Sachdev, Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems, Chapman and Hall (CRC Press), London (2000); G. I. Barenblatt, Scaling, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2003).
  2. D. Anderson, M. Desaix, M. Karlson, M. Lisak, and M.L. Quiroga-Teixeiro, �??Wave-breaking-free pulses in nonlinear-optical fibers,�?? J. Opt. Soc. Am. B 10, 1185-1190 (1993). [CrossRef]
  3. K. Tamura and M. Nakazawa, �??Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,�?? Opt. Lett. 21, 68-70 (1996) [CrossRef] [PubMed]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  5. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,�?? Opt. Lett. 25, 1753-1755 (2000). [CrossRef]
  6. V. I. Kruglov, A. C. Peacock, J. D. Harvey, J. M. Dudley, �??Self-similar propagation of parabolic pulses in normal dispersion fiber amplifiers,�?? J. Opt. Soc. Am. B 19, 461-469 (2002). [CrossRef]
  7. S. Boscolo, S. K. Turitsyn, V. Y. Novokshenov, and J. H. B. Nijhof, �??Self-similar parabolic optical solitary waves,�?? Theor. and Math. Phys. 133, 1647-1656 (2002). [CrossRef]
  8. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, D. J. Richardson, �??Soliton transmission and supercontinuum generation in holey fiber using a diode pumped Ytterbium fiber source,�?? Opt. Express 10, 382-387 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-382</a> [PubMed]
  9. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. -B. Kley, H. Zellmer, and A. Tünnermann, �??High-power femtosecond Yb-doped fiber amplifier,�?? Opt. Express 10, 628-638 (2002). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-628</a> [PubMed]
  10. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson and D. J. Richardson �??Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing > 25 W average power,�?? Opt. Lett. 29, 2073-2075 (2004). [CrossRef] [PubMed]
  11. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder and M. F. Yan, �??High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,�?? Opt. Express 12, 3025-3034 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-3025">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-3025</a> [CrossRef] [PubMed]
  12. Y. Ozeki, K. Taira, K. Aiso, Y. Takushima and K. Kikuchi, �??Highly flat super-continuum generation from 2 ps pulses using 1 km-long erbium-doped fibre amplifier,�?? Electron. Lett. 38, 1642-1643 (2004). [CrossRef]
  13. C. Finot, G. Millot, C. Billet, and J. M. Dudley, �??Experimental generation of parabolic pulses via Raman amplification in optical fiber�??, Opt. Express 11, 1547-1552 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1547</a> [CrossRef] [PubMed]
  14. C. Finot, G. Millot, and J. M. Dudley, �??Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers,�?? Opt. Lett. 29, 2533-2535 (2004). [CrossRef] [PubMed]
  15. C. Finot and G. Millot, �??Synthesis of optical pulses by use of similaritons�??, Opt. Express 12, 5104-5109 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5104">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5104</a> [CrossRef] [PubMed]
  16. C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen and V. P. Gapontsev, �??All-fiber format compression of frequency-chirped pulses in air-guiding photonic crystal fibers,�?? Phys. Rev. Lett. 93 / 103901 (2004). [CrossRef] [PubMed]
  17. D. N. Fittinghoff and M. Munroe, �??Noise: Its effects and Suppression�?? in Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R. Trebino, Kluwer Academic Publishers chapter 9, 179-201 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited