OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3310–3322

Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides

Haroldo T. Hattori, Christian Seassal, Xavier Letartre, Pedro Rojo-Romeo, Jean L. Leclercq, Pierre Viktorovitch, Marc Zussy, Lea di Cioccio, Loubna El Melhaoui, and Jean-Marc Fedeli  »View Author Affiliations

Optics Express, Vol. 13, Issue 9, pp. 3310-3322 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (376 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent years, many groups have envisioned the possibility of integrating optical and electronic devices in a single chip. In this paper, we study the integration of a photonic crystal laser fabricated in InP with a silicon passive waveguide. The coupling of energy between a 2D photonic crystal (PhC) triangular lattice band-edge laser and waveguide positioned underneath is analyzed in this paper. We show that a 40% coupling could be achieved provided the distance between the laser and the waveguide is carefully adjusted. A general description of the fabrication process used to realize these devices is also included in this paper.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(140.2020) Lasers and laser optics : Diode lasers
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Research Papers

Original Manuscript: March 18, 2005
Revised Manuscript: April 15, 2005
Published: May 2, 2005

Haroldo Hattori, Christian Seassal, Xavier Letartre, Pedro Rojo-Romeo, Jean Leclercq, Pierre Viktorovitch, Marc Zussy, Lea di Cioccio, Loubna El Melhaoui, and Jean-Marc Fedeli, "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides," Opt. Express 13, 3310-3322 (2005)

Sort:  Journal  |  Reset  


  1. D. Liu and C. Svensson, �??Power consumption estimation in CMOS VLSI circuit,�?? IEEE J. Solid-State Circuits 29, 663-670 (1994). [CrossRef]
  2. N. Savage, �??Linking with light,�?? IEEE Spectrum Online, Featured Article (2002). [CrossRef]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, �??Channel drop filters in photonic crystals,�?? Opt. Express 3, 4-11 (1998), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4</a> [CrossRef] [PubMed]
  4. T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, �??A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,�?? IEEE/OSA J. Lightwave Technol. 21, 1370-1376 (2003). [CrossRef]
  5. T. Matsumoto and T. Baba, " Photonic crystal k-vector superprism," IEEE/OSA J. Lightwave Technol. 22, 917-922 (2004). [CrossRef]
  6. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, H. A. Haus, "Waveguide branches in photonic crystals,�?? J. Opt. Soc. Am. B 18, 162-165 (2001). [CrossRef]
  7. Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, and I. Park,�?? Photonic crystal waveguides with multiple 90° bends,�?? Appl. Phys. Lett. 83, 231-233 (2003). [CrossRef]
  8. J. Smajic, C. Hafner, D. Erni, "Design and optimization of an achromatic photonic crystal bend,�?? Opt. Express 11, 1378-1384 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378</a> [CrossRef] [PubMed]
  9. 0. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�?? Brien, P. D. Dapkus, and I. Kim, "Two- dimensional photonic band-gap defect mode laser", Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  10. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, �??Characteristics of modified single-defect two-dimensional photonic crystal lasers,�?? IEEE J. Quantum Electronics 38, 1353-1365 (2002). [CrossRef]
  11. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, and P. Viktorovitch, �??Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane," J. Appl. Phys. 93, 23-31 (2003). [CrossRef]
  12. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1708</a> [CrossRef] [PubMed]
  13. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  14. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, �?? Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 80, 3901-3903 (2002). [CrossRef]
  15. N. Yokouchi, A. J. Danner, and K. D. Choquette,�??Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,�?? Appl. Phys. Lett., 82, 3608-3610 (2003). [CrossRef]
  16. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, �??Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,�?? Opt. Express 11, 1799-1808 (2003), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1799</a> [CrossRef] [PubMed]
  17. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004), <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1562</a> [CrossRef] [PubMed]
  18. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104, (2002). [CrossRef]
  19. S. H. Kwon, H. Y. Ryu, G. H. Kim, and Y. H. Lee, �??Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slab,�?? Appl. Phys. Lett. 83, 3870-3872 (2002). [CrossRef]
  20. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003). [CrossRef]
  21. L. Florescu, K. Busch, and S. John, �??Semiclassical theory of lasing in photonic crystals,�?? J. Opt. Soc. Am. B 19, 2215-2223 (2002). [CrossRef]
  22. J. Topol�??ancik, S. Pradhan, P-C Yu, S. Gosh, and P. Bhattacharya, �??Electrically injected photonic crystal edge-emitting quantum-dot laser source,�?? IEEE Photon. Technol. Lett. 16, 960-962 (2004). [CrossRef]
  23. S. G. Johnson, and J. Joannopoulos, �??Bloch-iterative frequency domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001) <a href=http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  24. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d�??Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, �??Modal analysis and engineering of InP-based two-dimensional photonic crystal microlasers on a silicon wafer,�?? IEEE J. Quantum Electron. 39, 419-425 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited