OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3388–3396

Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers

Evgeny A. Kuzin, Sergio Mendoza-Vazquez, Jaime Gutierrez-Gutierrez, Baldemar Ibarra-Escamilla, Joseph W. Haus, and Roberto Rojas-Laguna  »View Author Affiliations


Optics Express, Vol. 13, Issue 9, pp. 3388-3396 (2005)
http://dx.doi.org/10.1364/OPEX.13.003388


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.

© 2005 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Research Papers

History
Original Manuscript: March 22, 2005
Revised Manuscript: April 18, 2005
Published: May 2, 2005

Citation
Evgeny Kuzin, Sergio Mendoza-Vazquez, Jaime Gutierrez-Gutierrez, Baldemar Ibarra-Escamilla, Joseph Haus, and Roberto Rojas-Laguna, "Intra-pulse Raman frequency shift versus conventional Stokes generation of diode laser pulses in optical fibers," Opt. Express 13, 3388-3396 (2005)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3388


Sort:  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3d ed. (Academic, San Diego, California, 2001).
  2. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, Second Edition, International Thompson Publishing, 1993.
  3. F. M. Mitschke and L F. Molenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986). [CrossRef] [PubMed]
  4. J. P. Gordon, �??Theory of the soliton self-frequency shift,�?? Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  5. N. Nishizawa and T. Goto, �??Compact System of Wavelength-Tunable Femtosecond Soliton Pulses Generation Using Optical Fiber,�?? IEEE Photonics Tech. Lett. 11, 325-327 (1999). [CrossRef]
  6. D. A. Chestnut and J. R. Taylor, �??Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping,�?? Opt. Lett. 28, 2512-2514 (2003). [CrossRef] [PubMed]
  7. A. Efimov, A. J. Taylor, F. G. Omenetto and E. Vanin, �??Adaptive control of femtosecond soliton self-frequency shift in fibers,�?? Opt. Lett. 29, 271-273 (2004). [CrossRef] [PubMed]
  8. J. Santhanam and G. P. Agrawal, �??Raman-induced spectral shifts in optical fibers: general theory based on the moment method,�?? Opt. Commun. 222, 413-420 (2003). [CrossRef]
  9. C. Headley III and G. P. Agrawal, �??Unified description of ultrafast stimulated Raman scattering in optical fibers,�?? J. Opt. Soc. Am. B 13, 2170-2177 (1996). [CrossRef]
  10. A. Picozzi, C. Montes, J. Botineau, and E. Picholle, �??Inertial model for stimulated Raman scattering including chaotic dynamics,�?? J. Opt. Soc. Am. B 15, 1309-1314 (1998). [CrossRef]
  11. L. Garcia, J. Jenkins, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde, and J. R. Thompson, �??Influence of classical pump noise on long-pulse multi-order stimulated Raman scattering in optical fiber,�?? J. Opt. Soc. Am. B 19, 2727-2736 (2002). [CrossRef]
  12. L. Garcia, A. Jalili, Y. Lee, N. Poole, K. Salit, P. Sidereas, C. G. Goedde and J.R. Thompson, �??Effect of pump pulse temporal structure on long-pulse multi-order stimulated Raman scattering in optical fiber,�?? Opt. Commun. 193, 289-300 (2001). [CrossRef]
  13. P. K. Shukla and J. J. Rasmussen, �??Modulation instability of short pulses in long optical fibers,�?? Opt. Lett. 11, 171-173 (1986). [CrossRef] [PubMed]
  14. P. V. Mamyshev, S. V. Chernikov, E. M. Dianov and A. M. Prokhorov, �??Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulation instability and Raman self-scattering effects,�?? Opt. Lett. 15, 1365-1367 (1990). [CrossRef] [PubMed]
  15. G. A. Nowak, Y. H. Kao, T. J. Xia and M. N. Islam, �??Low power high-efficiency wavelength conversion based on modulation instability in high-nonlinearity fiber,�?? Opt. Lett. 23, 936-938 (1998). [CrossRef]
  16. A. K. Abeeluck and C. Headley, �??Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,�?? Opt. Lett. 30, 61-63 (2005). [CrossRef] [PubMed]
  17. B. Crosignani, P. Di Porto, and S. Solimento, �??Influence of guiding structures on spontaneous and stimulated emission: Raman scattering in optical fibers.�?? Phys. Rev. A. 21, 594-598 (1980). [CrossRef]
  18. D. Mahgerefteh, D. L. Butler, J. Goldhar, B. Rosenberg and G. L. Burdge, �??Technique for measurement of the Raman gain coefficient in optical fibers,�?? Opt. Lett. 21, 2026-2028 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited