OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 9 — May. 2, 2005
  • pp: 3454–3459

Photonic-crystal fiber as a multifunctional optical sensor and sample collector

Stanislav O. Konorov, Aleksei M. Zheltikov, and Michael Scalora  »View Author Affiliations

Optics Express, Vol. 13, Issue 9, pp. 3454-3459 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two protocols of optical sensing realized with the same photonic-crystal fiber are compared. In the first protocol, diode-laser radiation is delivered to a sample through the central core of a dual-cladding photonic-crystal fiber with a diameter of a few micrometers, while the large-diameter fiber cladding serves to collect the fluorescent response from the sample and to guide it to a detector in the backward direction. In the second scheme, liquid sample is collected by a microcapillary array in the fiber cladding and is interrogated by laser radiation guided in the fiber modes. For sample fluids with refractive indices exceeding the refractive index of the fiber material, fluid channels in photonic-crystal fibers can guide laser light by total internal reflection, providing an 80% overlap of interrogating radiation with sample fluid.

© 2005 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

Original Manuscript: March 8, 2005
Revised Manuscript: April 22, 2005
Published: May 2, 2005

Stanislav Konorov, Aleksei Zheltikov, and Michael Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005)

Sort:  Journal  |  Reset  


  1. P. St.J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. T. M. Monro, D. J. Richardson, and P. J. Bennett, �??Developing holey fibres for evanescent field devices�??, Electron. Lett. 35, 1188-1189 (1999). [CrossRef]
  3. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  4. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, �??Evanescent-wave gas sensing using microstructure fiber,�?? Opt. Eng. 41, 8-9 (2002). [CrossRef]
  5. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, �??Design and modeling of a photonic crystal fiber gas sensor,�?? Appl. Opt. 42, 3509-3515 (2003). [CrossRef] [PubMed]
  6. G. Pickrell, W. Peng, and A. Wang, �??Random-hole optical fiber evanescent-wave gas sensing,�?? Opt. Lett. 29, 1476- 1478 (2004). [CrossRef] [PubMed]
  7. J.B. Jensen, L.H. Pedersen, P.E. Hoiby, L.B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, �??Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,�?? Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  8. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker Jr., W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. St. J. Russell, �??Enhanced two-photon biosensing with double-clad photonic crystal fibers,�?? Opt. Lett. 28, 1224-1226 (2003). [CrossRef] [PubMed]
  9. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a> [CrossRef] [PubMed]
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080</a> [CrossRef] [PubMed]
  11. A.B. Fedotov, S.O. Konorov, V.P. Mitrokhin, E.E. Serebryannikov, and A.M. Zheltikov, �??Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,�?? Phys. Rev. A 70, 045802 (2004). [CrossRef]
  12. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, �??Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,�?? J. Phys. D: Appl. Phys. 36, 1375-1381 (2003). [CrossRef]
  13. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. J. Russell, and B. J. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-717</a> [CrossRef] [PubMed]
  14. S. O. Konorov, A. B. Fedotov, V. P. Mitrokhin, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, M. Scalora, and A. M. Zheltikov, "Laser Ablation of Dental Tissues with Picosecond Pulses of 1.06-µm Radiation Transmitted through a Hollow-Core Photonic-Crystal Fiber," Appl. Opt. 43, 2251-2256 (2004). [CrossRef] [PubMed]
  15. D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel�??skii, Y. Kondrat�??ev, A. Khokhlov, V. Shevandin, W. Kiefer, and A. M. Zheltikov, �??Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,�?? Appl. Phys. B 77, 299-305 (2003). [CrossRef]
  16. G.A.J.Besselink, P. Vulto, R.G.H.Lammertink, S.Schlautmann, A. van den Berg, W. Olthuis, G.H.M.Engbers, and R.B.M.Schasfoort, �??Electroosmotic guiding of sample flows in a laminar flow chamber,�?? Electrophoresis 25, 3705- 3711 (2004). [CrossRef] [PubMed]
  17. P. Mach, M. Dolinski, K.W. Baldwin, J.A. Rogers, C. Kerbage, R.S. Windeler, and B.J. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited